zoukankan      html  css  js  c++  java
  • 最长公共子序列

                                             Common Subsequence

                                                    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                                                             Total Submission(s): 9595    Accepted Submission(s): 3923


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
     
     
    一个简单的动态规划的应用
    直接给代码
     1 #include <iostream>
     2 //#include <cstdio>
     3 #include <cstring>
     4 #define N 1005
     5 using namespace std;
     6 int dp[N][N];
     7 string s,ss;
     8 int main(){
     9     while(cin>>s>>ss){
    10         int n=s.length();
    11         int m=ss.length();
    12         memset(dp,0, sizeof(dp));
    13         for(int i=1;i<=n;i++){
    14             for(int j=1;j<=m;j++){
    15                 if(s[i-1]==ss[j-1])
    16                     dp[i][j]=dp[i-1][j-1]+1;
    17                 else{
    18                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    19                 }
    20             }
    21         }
    22         cout<<dp[n][m]<<endl;
    23     }
    24     return 0;
    25 }
     
  • 相关阅读:
    队列与堆栈
    Python中的内置函数
    Centos 7 最小化部署svn版本控制(svn协议)
    Android中的一些简单的adb命令
    liunx服务程序的安装及配置
    liunx中安装包及其应用
    liunx网络基本命令
    liunx系统和其它的基本命令
    liunx用户管理的基本命令
    liunx的磁盘管理的基本命令
  • 原文地址:https://www.cnblogs.com/zllwxm123/p/7232930.html
Copyright © 2011-2022 走看看