https://leetcode.com/problems/unique-paths/
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
题解:$dp$
AC 代码:
class Solution { public: int uniquePaths(int m, int n) { vector<int> dp(n, 1); for(int i = 1; i < m; i ++) { for(int j = 1; j < n; j ++) dp[j] += dp[j - 1]; } return dp[n - 1]; } };
另一个代码:
#include <bits/stdc++.h> using namespace std; int n, m; int dp[1010][1010]; int main() { scanf("%d%d", &n, &m); for(int i = 0; i < n; i ++) { for(int j = 0; j < m; j ++) { if(i == 0 || j == 0) dp[i][j] = 1; else dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } int ans = dp[n - 1][m - 1]; printf("%d ", ans); return 0; }