zoukankan      html  css  js  c++  java
  • Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推荐)

    说白了

      Spark on YARN模式的安装,它是非常的简单,只需要下载编译好Spark安装包,在一台带有Hadoop YARN客户端的的机器上运行即可。

     Spark on YARN简介与运行wordcount(master、slave1和slave2)(博主推荐)

       Spark on YARN分为两种: YARN cluster(YARN standalone,0.9版本以前)和 YARN client。

         如果需要返回数据到client就用YARN client模式。

       如果数据存储到hdfs就用YARN cluster模式。(我一般是用这个)

    开篇要明白

      (1)spark-env.sh 是环境变量配置文件

      (2)spark-defaults.conf

      (3)slaves 是从节点机器配置文件

      (4)metrics.properties 是 监控

      (5)log4j.properties 是配置日志

      (5)fairscheduler.xml是公平调度

      (6)docker.properties 是 docker

      (7)我这里的Spark on YARN模式的安装,是master、slave1和slave2。

      (8)Spark on YARN模式的安装,其实,是必须要安装hadoop的。

      (9)为了管理,安装zookeeper,(即管理master、slave1和slave2)

    首先,说下我这篇博客的Spark on YARN模式的安装情况

    我的安装分区如下,3台都一样。

     

    关于如何关闭防火墙

      我这里不多说,请移步

    hadoop 50070 无法访问问题解决汇总

    关于如何配置静态ip和联网

      我这里不多说,我的是如下,请移步

    CentOS 6.5静态IP的设置(NAT和桥接联网方式都适用)

     

    复制代码
    DEVICE=eth0
    HWADDR=00:0C:29:A9:45:18
    TYPE=Ethernet
    UUID=50fc177a-f282-4c83-bfbc-cb0f00b92507
    ONBOOT=yes
    NM_CONTROLLED=yes
    BOOTPROTO=static
    
    DEFROUTE=yes
    PEERDNS=yes
    PEERROUTES=yes
    IPV4_FAILURE_FATAL=yes
    IPV6INIT=no
    NAME="System eth0"
    
    IPADDR=192.168.80.10
    BCAST=192.168.80.255
    GATEWAY=192.168.80.2
    NETMASK=255.255.255.0
    
    DNS1=192.168.80.2
    DNS2=8.8.8.8
    复制代码

    复制代码
    DEVICE=eth0
    HWADDR=00:0C:29:18:ED:4A
    TYPE=Ethernet
    UUID=b5d059e4-3b92-41ef-889b-68f2f5684fac
    ONBOOT=yes
    NM_CONTROLLED=yes
    BOOTPROTO=static
    
    DEFROUTE=yes
    PEERDNS=yes
    PEERROUTES=yes
    IPV4_FAILURE_FATAL=yes
    IPV6INIT=no
    NAME="System eth0"
    IPADDR=192.168.80.11
    BCAST=192.168.80.255
    GATEWAY=192.168.80.2
    NETMASK=255.255.255.0
    
    DNS1=192.168.80.2
    DNS2=8.8.8.8
    复制代码

    复制代码
    DEVICE=eth0
    HWADDR=00:0C:29:8B:DE:B0
    TYPE=Ethernet
    UUID=1ba7be29-2c80-4875-8c11-1ed2a47c0a67
    ONBOOT=yes
    NM_CONTROLLED=yes
    BOOTPROTO=static
    
    DEFROUTE=yes
    PEERDNS=yes
    PEERROUTES=yes
    IPV4_FAILURE_FATAL=yes
    IPV6INIT=no
    NAME="System eth0"
    IPADDR=192.168.80.12
    BCAST=192.168.80.255
    GATEWAY=192.168.80.2
    NETMASK=255.255.255.0
    
    DNS1=192.168.80.2
    DNS1=8.8.8.8
    复制代码

    关于新建用户组和用户

      我这里不多说,我是spark,请移步

    新建用户组、用户、用户密码、删除用户组、用户(适合CentOS、Ubuntu)

    关于安装ssh、机器本身、机器之间进行免密码通信和时间同步

      我这里不多说,具体,请移步。在这一步,本人深有感受,有经验。最好建议拍快照。否则很容易出错!

      机器本身,即master与master、slave1与slave1、slave2与slave2。

      机器之间,即master与slave1、master与slave2。

            slave1与slave2。

    hadoop-2.6.0.tar.gz + spark-1.5.2-bin-hadoop2.6.tgz 的集群搭建(3节点和5节点皆适用)

    hadoop-2.6.0.tar.gz的集群搭建(5节点)

     

     关于如何先卸载自带的openjdk,再安装

      我这里不多说,我是jdk-8u60-linux-x64.tar.gz,请移步

      我的jdk是安装在/usr/local/jdk下,记得赋予权限组,chown -R spark:spark jdk

    Centos 6.5下的OPENJDK卸载和SUN的JDK安装、环境变量配置

     

    #java
    export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60
    export JRE_HOME=$JAVA_HOME/jre
    export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib
    export PATH=$PATH:$JAVA_HOME/bin

     关于如何安装scala

      不多说,我这里是scala-2.10.5.tgz,请移步

      我的scala安装在/usr/local/scala,记得赋予用户组,chown -R spark:spark scala

     

    hadoop-2.6.0.tar.gz + spark-1.6.1-bin-hadoop2.6.tgz的集群搭建(单节点)(CentOS系统)

    #scala
    export SCALA_HOME=/usr/local/scala/scala-2.10.5
    export PATH=$PATH:$SCALA_HOME/bin

     关于如何安装hadoop

      我这里不多说,请移步见

      我的spark安装目录是在/usr/local/hadoop/,记得赋予用户组,chown -R spark:spark hadoop

        去看如何安装就好,至于hadoop的怎么配置。请见下面的hadoop on yarn模式的配置文件讲解。

    #hadoop
    export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

     关于如何安装spark

      我这里不多说,请移步见

      我的spark安装目录是在/usr/local/spark/,记得赋予用户组,chown -R spark:spark spark

        只需去下面的博客,去看如何安装就好,至于spark的怎么配置。请见下面的spark  standalone模式的配置文件讲解。

    hadoop-2.6.0.tar.gz + spark-1.6.1-bin-hadoop2.6.tgz的集群搭建(单节点)(CentOS系统)

    #spark
    export SPARK_HOME=/usr/local/spark/spark-1.6.1-bin-hadoop2.6
    export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

    关于zookeeper的安装

      我这里不多说,请移步

    hadoop-2.6.0-cdh5.4.5.tar.gz(CDH)的3节点集群搭建(含zookeeper集群安装)

     以及,之后,在spark 里怎么配置zookeeper。

     

    这里,我带大家来看官网

    http://spark.apache.org/docs/latest

    http://spark.apache.org/docs/latest/running-on-yarn.html

     

      

    这里,不多说,很简单,自行去看官网。多看官网!

    Hadoop on YARN配置与部署

       这里,不多说,请移步

    hadoop-2.6.0.tar.gz的集群搭建(3节点)(不含zookeeper集群安装)

    hadoop-2.6.0-cdh5.4.5.tar.gz(CDH)的3节点集群搭建(含zookeeper集群安装)

    hadoop-2.6.0.tar.gz + spark-1.5.2-bin-hadoop2.6.tgz 的集群搭建(3节点和5节点皆适用)

      我这里,只贴出我最后的配置文件和启动界面

          注意:3台都是一样的配置,master、slave1和slave2,我这里不多赘述。

    hadoop-env.sh

    export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60

     core-site.xml

    <configuration>
            <property>
                    <name>fs.defaultFS</name>
                    <value>hdfs://master:9000</value>
            </property>
            <property>
                   <name>io.file.buffer.size</name>
                   <value>131072</value>
            </property>
            <property>
                   <name>hadoop.tmp.dir</name>
                   <value>/usr/local/hadoop/hadoop-2.6.0/tmp</value>
            </property>
            <property>
                  <name>hadoop.proxyuser.hadoop.hosts</name>
                    <value>*</value>
            </property>
            <property>
                  <name>hadoop.proxyuser.hadoop.groups</name>
                   <value>*</value>
            </property>
    </configuration>

    hdfs-site.xml

    <configuration>
            <property>
                    <name>dfs.namenode.secondary.http-address</name>
                  <value>master:9001</value>
            </property>
            <property>
                  <name>dfs.replication</name>
                  <value>2</value>
            </property>
            <property>
                  <name>dfs.namenode.name.dir</name>
                   <value>/usr/local/hadoop/hadoop-2.6.0/dfs/name</value>
            </property>
            <property>
                  <name>dfs.datanode.data.dir</name>
                  <value>/usr/local/hadoop/hadoop-2.6.0/dfs/data</value>
            </property>
            <property>
                  <name>dfs.webhdfs.enabled</name>
                  <value>true</value>
            </property>
    </configuration>

    mapred-site.xml

    <configuration>
            <property>
                    <name>mapreduce.framework.name</name>
                  <value>yarn</value>
            </property>
            <property>
                  <name>mapreduce.jobhistory.address</name>
                  <value>master:10020</value>
            </property>
            <property>
                  <name>mapreduce.jobhistory.webapp.address</name>
                  <value>master:19888</value>
            </property>
    </configuration>

     yarn-site.xml

    <configuration>
    
        <property>
              <name>yarn.resourcemanager.hostname</name>
                <value>master</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
            <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
        <property>
             <name>yarn.resourcemanager.address</name>
              <value>master:8032</value>
        </property>
        <property>
              <name>yarn.resourcemanager.scheduler.address</name>
              <value>master:8030</value>
        </property>
        <property>
              <name>yarn.resourcemanager.resource-tracker.address</name>
              <value>master:8031</value>
        </property>
        <property>
              <name>yarn.resourcemanager.admin.address</name>
              <value>master:8033</value>
        </property>
        <property>
              <name>yarn.resourcemanager.webapp.address</name>
              <value>master:8088</value>
        </property>
    </configuration>

    slaves

    slave1
    slave2

    masters

    master

      然后,新建目录

    mkdir -p /usr/local/hadoop/hadoop-2.6.0/dfs/name
    mkdir -p /usr/local/hadoop/hadoop-2.6.0/dfs/data
    mkdir -p /usr/local/hadoop/hadoop-2.6.0/tmp

      在master节点上,格式化

    $HADOOP_HOME/bin/hadoop namenode -format

      启动hadoop进程

    $HADOOP_HOME/sbin/start-all.sh

      输入

    http://master:50070

    http://master:8088

      

    Spark on YARN配置与部署(这里,作为补充)

    编译时包含YARN

    mvn -Pyarn -Phadoop-2.6 -Dhadoop.version=2.7.1 -Phive -Phive-thriftserver -Psparkr -DskipTests clean package
    
    /make-distribution.sh --name hadoop2.7.1 --tgz -Psparkr -Phadoop-2.6 -Dhadoop.version=2.7.1 -Phive -Phive-thriftserver –Pyarn

    注意:

      hadoop的版本跟你使用的hadoop要对应,建议使用CDH或者HDP的hadoop发行版,对应关系已经处理好了

    export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"

     

     

     

     

     

     

     

     

    Spark on YARN的配置(这里,本博文的重点)

      Spark On YARN安装非常简单,只需要下载编译好的Spark安装包,在一台带有Hadoop Yarn客户端的机器上解压即可。

       Spark on YARN分为两种: YARN cluster(YARN standalone,0.9版本以前)和 YARN client。

    YARN cluster是...我是用这种。

    YARN client是将Client和Driver运行在一起(运行在本地),AM只用来管理资源。

      如果需要返回数据到client就用YARN client模式。

      如果数据存储到hdfs就用YARN cluster模式。

     注意:3台都是一样的配置,master、slave1和slave2,我这里不多赘述。

      

     

     

     

    Spark on YARN基本配置

      配置HADOOP_CONF_DIR或者YARN_CONF_DIR环境变量。让Spark知道YARN的配置信息。

      这句话是从哪里来的,其实,你若没有在spark-env.sh配置任何东西的话,直接去执行$SPARK_HOME/bin/spark-shell  --master yarn就可以看到,它提示你去做。

     

     

     

     

      有三种方式

         (1)配置在spark-env.sh中 (我一般是用这种)(本博文也是这种)

         (2)在提交spark应用之前export

          (3) 配在到操作系统的环境变量中

       注意:在yarn-site.xml,配上hostname

     

     

       如果使用的是HDP,请在spark-defaults.conf中加入:(这里,作为补充)

      spark.driver.extraJavaOptions -Dhdp.version=current
    
      spark.yarn.am.extraJavaOptions -Dhdp.version=current

     

     

     

     

    修改如下配置:

    ● slaves--指定在哪些节点上运行worker。

    #
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #
    
    # A Spark Worker will be started on each of the machines listed below.
    slave1
    slave2

     

     

    spark-defaults.conf---spark提交job时的默认配置

    复制代码
    #
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #
    
    # Default system properties included when running spark-submit.
    # This is useful for setting default environmental settings.
    
    # Example:
    # spark.master                     spark://master:7077
    # spark.eventLog.enabled           true
    # spark.eventLog.dir               hdfs://namenode:8021/directory
    # spark.serializer                 org.apache.spark.serializer.KryoSerializer
    # spark.driver.memory              5g
    # spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
    复制代码

      大家,可以在这个配置文件里指定好,以后每次不需在命令行下指定了。当然咯,也可以不配置啦!(我一般是这里不配置,即这个文件不动它

    spark-defaults.conf (这个作为可选可不选)(是因为或者是在spark-submit里也是可以加入的)(一般不选,不然固定死了)(我一般是这里不配置,即这个文件不动它

    spark.master                       spark://master:7077
    spark.eventLog.enabled             true
    spark.eventLog.dir                 hdfs://master:9000/sparkHistoryLogs
    spark.eventLog.compress            true
    spark.history.fs.update.interval   5
    spark.history.ui.port              7777
    spark.history.fs.logDirectory      hdfs://master:9000/sparkHistoryLogs

      

    spark-env.sh—spark的环境变量

    #!/usr/bin/env bash
    
    #
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #
    
    # This file is sourced when running various Spark programs.
    # Copy it as spark-env.sh and edit that to configure Spark for your site.
    
    # Options read when launching programs locally with
    # ./bin/run-example or ./bin/spark-submit
    # - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
    # - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
    # - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
    # - SPARK_CLASSPATH, default classpath entries to append
    
    # Options read by executors and drivers running inside the cluster
    # - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
    # - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
    # - SPARK_CLASSPATH, default classpath entries to append
    # - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
    # - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos
    
    # Options read in YARN client mode
    # - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
    # - SPARK_EXECUTOR_INSTANCES, Number of executors to start (Default: 2)
    # - SPARK_EXECUTOR_CORES, Number of cores for the executors (Default: 1).
    # - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
    # - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G)
    # - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
    # - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
    # - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
    # - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.
    
    # Options for the daemons used in the standalone deploy mode
    # - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
    # - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
    
    
    # - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
    # - SPARK_WORKER_CORES, to set the number of cores to use on this machine
    # - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
    # - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
    # - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
    # - SPARK_WORKER_DIR, to set the working directory of worker processes
    # - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
    # - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
    # - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
    # - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
    # - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
    # - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
    
    # Generic options for the daemons used in the standalone deploy mode
    # - SPARK_CONF_DIR      Alternate conf dir. (Default: ${SPARK_HOME}/conf)
    # - SPARK_LOG_DIR       Where log files are stored.  (Default: ${SPARK_HOME}/logs)
    # - SPARK_PID_DIR       Where the pid file is stored. (Default: /tmp)
    # - SPARK_IDENT_STRING  A string representing this instance of spark. (Default: $USER)
    # - SPARK_NICENESS      The scheduling priority for daemons. (Default: 0)


    export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60 (必须写)
    export SCALA_HOME=/usr/local/scala/scala-2.10.5 (必须写)
    export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0 (必须写)
    export HADOOP_CONF_DIR=/usr/local/hadoop/hadoop-2.6.0/etc/
    hadoop (必须写)
    export SPARK_MASTER_IP=192.168.80.10  
    export SPARK_WORKER_MERMORY=1G (官网上说,至少1g)

     

      

     

     

     

     

     

     

     

     

     

    spark-shell运行在YARN上(这是Spark on YARN模式)

         (包含YARN client和YARN cluster)(作为补充)

     登陆安装Spark那台机器

    bin/spark-shell --master yarn-client

     或者

    bin/spark-shell --master yarn-cluster

       包括可以加上其他的,比如控制内存啊等。这很简单,不多赘述。

     

      我这里就以YARN Client演示了。

    [spark@master spark-1.6.1-bin-hadoop2.6]$ bin/spark-shell --master yarn-client
    17/03/29 22:40:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/03/29 22:40:04 INFO spark.SecurityManager: Changing view acls to: spark
    17/03/29 22:40:04 INFO spark.SecurityManager: Changing modify acls to: spark
    17/03/29 22:40:04 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
    17/03/29 22:40:05 INFO spark.HttpServer: Starting HTTP Server
    17/03/29 22:40:06 INFO server.Server: jetty-8.y.z-SNAPSHOT
    17/03/29 22:40:06 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:35692
    17/03/29 22:40:06 INFO util.Utils: Successfully started service 'HTTP class server' on port 35692.
    Welcome to
          ____              __
         / __/__  ___ _____/ /__
        _ / _ / _ `/ __/  '_/
       /___/ .__/\_,_/_/ /_/\_   version 1.6.1
          /_/
    
    Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_60)

       注意,这里的--master是固定参数,不是说主机名是master。

    Spark Shell启动时遇到<console>:14: error: not found: value spark import spark.implicits._ <console>:14: error: not found: value spark import spark.sql错误的解决办法(图文详解)

     

     

     

    提交spark作业

      为了出现问题,还是先看我写的这篇博客吧!

    spark跑YARN模式或Client模式提交任务不成功(application state: ACCEPTED)

    1、用yarn-client模式提交spark作业

    在/usr/local/spark目录下创建文件夹

    vi spark_pi.sh
    $SPARK_HOME/bin/spark-submit 
    --class org.apache.spark.examples.JavaSparkPi 
    --master yarn-client 
    --num-executors 1 
    --driver-memory 1g 
    --executor-memory 1g 
    --executor-cores 1 
    
    $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar 


    driver-memory不指定也可以,默认使用512M
    executor-memory不指定的化, 默认是1G
    chmod 777 spark_pi.sh
    ./spark_pi.sh

    或者

    [spark@master ~]$  $SPARK_HOME/bin/spark-submit  
    > --class org.apache.spark.examples.JavaSparkPi 
    > --master yarn-cluster 
    > --num-executors 1 
    > --driver-memory 1g 
    > --executor-memory 1g 
    > --executor-cores 1 
    >  $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar


    driver-memory不指定也可以,默认使用512M
    executor-memory不指定的化, 默认是1G

    2、用yarn-cluster模式提交spark作业

     

    在/usr/local/spark目录下创建文件夹

     

    vi spark_pi.sh
    $SPARK_HOME/bin/spark-submit 
    --class org.apache.spark.examples.JavaSparkPi 
    --master yarn-cluster 
    --num-executors 1 
    --driver-memory 1g 
    --executor-memory 1g 
    --executor-cores 1 
    
    $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar 


    driver-memory不指定也可以,默认使用512M
    executor-memory不指定的化, 默认是1G

     

     chmod 777 spark_pi.sh
    ./spark_pi.sh

     或者

    [spark@master ~]$  $SPARK_HOME/bin/spark-submit  
    > --class org.apache.spark.examples.JavaSparkPi 
    > --master yarn-cluster 
    > --num-executors 1 
    > --driver-memory 1g 
    > --executor-memory 1g 
    > --executor-cores 1 
    >  $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar


    driver-memory不指定也可以,默认使用512M
    executor-memory不指定的化, 默认是1G

       注意,这里的--master是固定参数

       

     
     
     
  • 相关阅读:
    关于 转换图片url为base64格式以及base64格式图片地址转为图片文件
    rem布局在Androidwebview中页面错乱
    vue中 $event 的用法--获取当前父元素,子元素,兄弟元素
    vue实现动态改变title
    vue页面跳转-携带参数
    vue项目打包部署生产环境
    Mark区
    kma 2019CSP前刷题记录
    机房的沙茶日常
    2019NOIP算法复健+学习
  • 原文地址:https://www.cnblogs.com/zlslch/p/6638398.html
Copyright © 2011-2022 走看看