zoukankan      html  css  js  c++  java
  • Kafka的3节点集群详细启动步骤(Zookeeper是外装)

      首先,声明,kafka集群是搭建在hadoop1、hadoop2和hadoop3机器上。

    kafka_2.10-0.8.1.1.tgz的1或3节点集群的下载、安装和配置(图文详细教程)绝对干货

      如下分别是各自的配置信息。(网上说,还需要配置zookeeper.properties,其实不需要,因为,zookeeper集群那边已经配置好了。)

    [hadoop@hadoop1 config]$ pwd
    /home/hadoop/kafka/config
    [hadoop@hadoop1 config]$ ll
    total 32
    -rw-r--r-- 1 hadoop hadoop 1199 Sep  3  2015 consumer.properties
    -rw-r--r-- 1 hadoop hadoop 3846 Sep  3  2015 log4j.properties
    -rw-r--r-- 1 hadoop hadoop 2228 Sep  3  2015 producer.properties
    -rw-r--r-- 1 hadoop hadoop 5712 May  1 10:00 server.properties
    -rw-r--r-- 1 hadoop hadoop 3325 Sep  3  2015 test-log4j.properties
    -rw-r--r-- 1 hadoop hadoop  993 Sep  3  2015 tools-log4j.properties
    -rw-r--r-- 1 hadoop hadoop 1023 Sep  3  2015 zookeeper.properties
    [hadoop@hadoop1 config]$ vim server.properties 

    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    # 
    #    http://www.apache.org/licenses/LICENSE-2.0
    # 
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # see kafka.server.KafkaConfig for additional details and defaults
    
    ############################# Server Basics #############################
    
    # The id of the broker. This must be set to a unique integer for each broker.
    broker.id=1
    
    ############################# Socket Server Settings #############################
    
    # The port the socket server listens on
    port=9092
    
    # Hostname the broker will bind to. If not set, the server will bind to all interfaces
    host.name=192.168.80.121
    
    # Hostname the broker will advertise to producers and consumers. If not set, it uses the
    # value for "host.name" if configured.  Otherwise, it will use the value returned from
    # java.net.InetAddress.getCanonicalHostName().
    #advertised.host.name=<hostname routable by clients>
    
    # The port to publish to ZooKeeper for clients to use. If this is not set,
    # it will publish the same port that the broker binds to.
    #advertised.port=<port accessible by clients>
    
    # The number of threads handling network requests
    num.network.threads=3
     
    # The number of threads doing disk I/O
    num.io.threads=8
    
    # The send buffer (SO_SNDBUF) used by the socket server
    socket.send.buffer.bytes=102400
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    socket.receive.buffer.bytes=102400
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    socket.request.max.bytes=104857600
    
    
    ############################# Log Basics #############################
    
    # A comma seperated list of directories under which to store log files
    log.dirs=/home/kafka-logs
    
    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    num.partitions=5
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    num.recovery.threads.per.data.dir=1
    
    ############################# Log Flush Policy #############################
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk. 
    # There are a few important trade-offs here:
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. 
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000
    
    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000
    
    ############################# Log Retention Policy #############################
    
    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.
    
    # The minimum age of a log file to be eligible for deletion
    log.retention.hours=168
    
    # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
    # segments don't drop below log.retention.bytes.
    #log.retention.bytes=1073741824
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    log.segment.bytes=1073741824
    
    # The interval at which log segments are checked to see if they can be deleted according 
    # to the retention policies
    log.retention.check.interval.ms=300000
    
    # By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
    # If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
    log.cleaner.enable=false
    
    export HBASE_MANAGES_ZK=false
    offsets.storage=kafka
    dual.commit.enabled=true
    delete.topic.enable=true
    
    ############################# Zookeeper #############################
    
    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    zookeeper.connect=192.168.80.121:2181,192.168.80.122:2181,192.168.80.123:2181
    
    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=6000

     

    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    # 
    #    http://www.apache.org/licenses/LICENSE-2.0
    # 
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # see kafka.server.KafkaConfig for additional details and defaults
    
    ############################# Server Basics #############################
    
    # The id of the broker. This must be set to a unique integer for each broker.
    broker.id=2
    
    ############################# Socket Server Settings #############################
    
    # The port the socket server listens on
    port=9092
    
    # Hostname the broker will bind to. If not set, the server will bind to all interfaces
    host.name=192.168.80.122
    
    # Hostname the broker will advertise to producers and consumers. If not set, it uses the
    # value for "host.name" if configured.  Otherwise, it will use the value returned from
    # java.net.InetAddress.getCanonicalHostName().
    #advertised.host.name=<hostname routable by clients>
    
    # The port to publish to ZooKeeper for clients to use. If this is not set,
    # it will publish the same port that the broker binds to.
    #advertised.port=<port accessible by clients>
    
    # The number of threads handling network requests
    num.network.threads=3
     
    # The number of threads doing disk I/O
    num.io.threads=8
    
    # The send buffer (SO_SNDBUF) used by the socket server
    socket.send.buffer.bytes=102400
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    socket.receive.buffer.bytes=102400
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    socket.request.max.bytes=104857600
    
    
    ############################# Log Basics #############################
    
    # A comma seperated list of directories under which to store log files
    log.dirs=/home/kafka-logs
    
    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    num.partitions=5
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    num.recovery.threads.per.data.dir=1
    
    ############################# Log Flush Policy #############################
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk. 
    # There are a few important trade-offs here:
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. 
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000
    
    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000
    
    ############################# Log Retention Policy #############################
    
    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.
    
    # The minimum age of a log file to be eligible for deletion
    log.retention.hours=168
    
    # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
    # segments don't drop below log.retention.bytes.
    #log.retention.bytes=1073741824
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    log.segment.bytes=1073741824
    
    # The interval at which log segments are checked to see if they can be deleted according 
    # to the retention policies
    log.retention.check.interval.ms=300000
    
    # By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
    # If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
    log.cleaner.enable=false
    
    export HBASE_MANAGES_ZK=false
    offsets.storage=kafka
    dual.commit.enabled=true
    delete.topic.enable=true
    
    ############################# Zookeeper #############################
    
    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    zookeeper.connect=192.168.80.121:2181,192.168.80.122:2181,192.168.80.123:2181
    
    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=6000

    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    # 
    #    http://www.apache.org/licenses/LICENSE-2.0
    # 
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # see kafka.server.KafkaConfig for additional details and defaults
    
    ############################# Server Basics #############################
    
    # The id of the broker. This must be set to a unique integer for each broker.
    broker.id=3
    
    ############################# Socket Server Settings #############################
    
    # The port the socket server listens on
    port=9092
    
    # Hostname the broker will bind to. If not set, the server will bind to all interfaces
    host.name=192.168.80.123
    
    # Hostname the broker will advertise to producers and consumers. If not set, it uses the
    # value for "host.name" if configured.  Otherwise, it will use the value returned from
    # java.net.InetAddress.getCanonicalHostName().
    #advertised.host.name=<hostname routable by clients>
    
    # The port to publish to ZooKeeper for clients to use. If this is not set,
    # it will publish the same port that the broker binds to.
    #advertised.port=<port accessible by clients>
    
    # The number of threads handling network requests
    num.network.threads=3
     
    # The number of threads doing disk I/O
    num.io.threads=8
    
    # The send buffer (SO_SNDBUF) used by the socket server
    socket.send.buffer.bytes=102400
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    socket.receive.buffer.bytes=102400
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    socket.request.max.bytes=104857600
    
    
    ############################# Log Basics #############################
    
    # A comma seperated list of directories under which to store log files
    log.dirs=/home/kafka-logs
    
    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    num.partitions=5
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    num.recovery.threads.per.data.dir=1
    
    ############################# Log Flush Policy #############################
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk. 
    # There are a few important trade-offs here:
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. 
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000
    
    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000
    
    ############################# Log Retention Policy #############################
    
    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.
    
    # The minimum age of a log file to be eligible for deletion
    log.retention.hours=168
    
    # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
    # segments don't drop below log.retention.bytes.
    #log.retention.bytes=1073741824
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    log.segment.bytes=1073741824
    
    # The interval at which log segments are checked to see if they can be deleted according 
    # to the retention policies
    log.retention.check.interval.ms=300000
    
    # By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
    # If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
    log.cleaner.enable=false
    
    
    export HBASE_MANAGES_ZK=false
    offsets.storage=kafka
    dual.commit.enabled=true
    delete.topic.enable=true
    
    
    ############################# Zookeeper #############################
    
    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    zookeeper.connect=192.168.80.121:2181,192.168.80.122:2181,192.168.80.123:2181
    
    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=6000

       Kafka的3节点集群详细启动步骤

    第一步、首先启动kafka进程

    [hadoop@hadoop1 kafka]$ nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &

    [2] 4609



    [hadoop@hadoop2 kafka]$ nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &

    [2] 10077

    [hadoop@hadoop3 kafka]$ nohup bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &

    [1] 8079

    第二步、创建topics 

    [hadoop@hadoop1 bin]$ ./kafka-topics.sh --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181 --create --topic t-behavior --replication-factor 3 --partitions 3

      或者

    [hadoop@hadoop1 bin]$ ./kafka-topics.sh --zookeeper hadoop1:2181 --create --topic t-behavior --replication-factor 3 --partitions 3

    第三步:查看topic 和 topic详情

    [hadoop@hadoop1 bin]$ ./kafka-topics.sh --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181 --list

    t-behavior

    [hadoop@hadoop1 bin]$ ./kafka-topics.sh --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181 --describe --topic t-behavior

      或者
    [hadoop@hadoop1 bin]$ 

    ./kafka-topics.sh --zookeeper hadoop1:2181 --list

    t-behavior

    [hadoop@hadoop1 bin]$ ./kafka-topics.sh --zookeeper hadoop1:2181 --describe --topic t-behavior

    Topic:t-behavior PartitionCount:1 ReplicationFactor:3 Configs:
    Topic: t-behavior Partition: 0 Leader: 3 Replicas: 3,2,1 Isr: 3,1,2

    第四步:开启Kafka producer生产者(在hadoop1和hadoop2和hadoop3都可以)
      模拟producer发送消息
    用命令行的方式手动的往kafka的topic里面发送消息:

    [hadoop@hadoop2 bin]$ ./kafka-console-producer.sh --broker-list hadoop1:9092,hadoop1:9092,hadoop1:9092 --topic t-behavior

    [2015-09-24 14:03:24,616] WARN Property topic is not valid (kafka.utils.VerifiableProperties)
    This is Kafka producer.
    Hello

    或者

    [hadoop@hadoop2 bin]$ ./kafka-console-producer.sh --broker-list hadoop1:9092 --topic t-behavior


    第五步:开启Kafka consumer消费者(在hadoop1和hadoop2和hadoop3都可以)

    [hadoop@hadoop3 bin]$./kafka-console-consumer.sh --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181 --topic t-behavior --from-beginning

    This is Kafka producer.
    Hello

    或者

    [hadoop@hadoop3 bin]$./kafka-console-consumer.sh --zookeeper hadoop1:2181 --topic t-behavior

    第六步:停止kafka
    cd $KAFKA_HOME/bin

    ./kafka-server-stop.sh

    或者找到kafka的进程,直接kill掉即可。

        

    彻底删除topic:
      1、删除kafka存储目录(server.properties文件log.dirs配置,默认为"/tmp/kafka-logs")相关topic目录
      2、如果配置了delete.topic.enable=true直接通过命令删除,如果命令删除不掉,直接通过zookeeper-client 删除掉broker下的topic即可。
    [hadoop@hadoop1 bin]$ ./kafka-topics.sh --delete --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181 --topic t-behavior

      其实啊,现在越来越多的优秀插件出来了。

      可以不需这么命令行去做了,直接界面化多么的好!

    基于Web的Kafka管理器工具之Kafka-manager安装之后第一次进入web UI的初步配置(图文详解)

  • 相关阅读:
    软件评测师笔记(十二)—— 口令攻击相关
    软件评测师笔记(十一)—— 可靠性测试相关
    软件评测师笔记(十)—— 安全测试相关
    软件评测师笔记(九)—— 性能测试相关
    【猫狗数据集】利用tensorboard可视化训练和测试过程
    【colab pytorch】使用tensorboardcolab可视化
    【colab pytorch】使用tensorboard可视化
    【colab pytorch】FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy
    【猫狗数据集】使用学习率衰减策略并边训练边测试
    【猫狗数据集】划分验证集并边训练边验证
  • 原文地址:https://www.cnblogs.com/zlslch/p/6791452.html
Copyright © 2011-2022 走看看