zoukankan      html  css  js  c++  java
  • spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的SparkTC.scala(图文详解)

    不多说,直接上干货!

    spark-1.6.1-bin-hadoop2.6里Basic包下的SparkTC.scala

    /*
     * Licensed to the Apache Software Foundation (ASF) under one or more
     * contributor license agreements.  See the NOTICE file distributed with
     * this work for additional information regarding copyright ownership.
     * The ASF licenses this file to You under the Apache License, Version 2.0
     * (the "License"); you may not use this file except in compliance with
     * the License.  You may obtain a copy of the License at
     *
     *    http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    // scalastyle:off println
    //package org.apache.spark.examples
    package zhouls.bigdata
    
    import scala.util.Random
    import scala.collection.mutable
    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.SparkContext._
    
    
    
    /**
     * Transitive closure on a graph.
     */
    object SparkTC {
      
      val numEdges = 200
      val numVertices = 100
      val rand = new Random(42)
    
      def generateGraph: Seq[(Int, Int)] = {
        val edges: mutable.Set[(Int, Int)] = mutable.Set.empty
        while (edges.size < numEdges) {
          val from = rand.nextInt(numVertices)
          val to = rand.nextInt(numVertices)
          if (from != to) edges.+=((from, to))
        }
        edges.toSeq
      }
    
      
      /*
       * 主函数
       */
      def main(args: Array[String]) {
        val sparkConf = new SparkConf().setAppName("SparkTC").setMaster("local")
        val spark = new SparkContext(sparkConf)
        val slices = if (args.length > 0) args(0).toInt else 2
        var tc = spark.parallelize(generateGraph, slices).cache()
    
        // Linear transitive closure: each round grows paths by one edge,
        // by joining the graph's edges with the already-discovered paths.
        // e.g. join the path (y, z) from the TC with the edge (x, y) from
        // the graph to obtain the path (x, z).
    
        // Because join() joins on keys, the edges are stored in reversed order.
        val edges = tc.map(x => (x._2, x._1))//翻转起点和终点,方便join, (x,y) (y,z) ==>(x,z) 需要翻转(x,y)为(y,x)才能join出正确结果
    
        // This join is iterated until a fixed point is reached.(不断join,union并计算个数直到不变)
        var oldCount = 0L
        var nextCount = tc.count()
        do {
          oldCount = nextCount
          // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
          // then project the result to obtain the new (x, z) paths.
          tc = tc.union(tc.join(edges).map(x => (x._2._2, x._2._1))).distinct().cache()
          nextCount = tc.count()
        } while (nextCount != oldCount)
    
        println("TC has " + tc.count() + " edges.")
        spark.stop()
      }
    }
    // scalastyle:on println

    /*
     * Licensed to the Apache Software Foundation (ASF) under one or more
     * contributor license agreements.  See the NOTICE file distributed with
     * this work for additional information regarding copyright ownership.
     * The ASF licenses this file to You under the Apache License, Version 2.0
     * (the "License"); you may not use this file except in compliance with
     * the License.  You may obtain a copy of the License at
     *
     *    http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    // scalastyle:off println
    package org.apache.spark.examples
    
    import scala.collection.mutable
    import scala.util.Random
    import org.apache.spark.sql.SparkSession
    
    /**
     * Transitive closure on a graph.
     */
    object SparkTC {
      
      val numEdges = 200
      val numVertices = 100
      val rand = new Random(42)
    
      /*
       * 1. 计算传递闭包(可到达路径数目)
         * 2. 自动生成图,使用可变Set存储起点,终点 
       */
      def generateGraph: Seq[(Int, Int)] = {
        val edges: mutable.Set[(Int, Int)] = mutable.Set.empty
        while (edges.size < numEdges) {
          val from = rand.nextInt(numVertices)
          val to = rand.nextInt(numVertices)
          if (from != to) edges.+=((from, to))
        }
        edges.toSeq
      }
    
      def main(args: Array[String]) {
        val spark = SparkSession
          .builder
          .master("local")
          .appName("SparkTC")
          .getOrCreate() 
          
        val slices = if (args.length > 0) args(0).toInt else 2
        var tc = spark.sparkContext.parallelize(generateGraph, slices).cache()
    
        // Linear transitive closure: each round grows paths by one edge,
        // by joining the graph's edges with the already-discovered paths.
        // e.g. join the path (y, z) from the TC with the edge (x, y) from
        // the graph to obtain the path (x, z).
    
        // Because join() joins on keys, the edges are stored in reversed order.
        val edges = tc.map(x => (x._2, x._1))//翻转起点和终点,方便join, (x,y) (y,z) ==>(x,z) 需要翻转(x,y)为(y,x)才能join出正确结果
    
        
        // This join is iterated until a fixed point is reached.(不断join,union并计算个数直到不变)
        var oldCount = 0L
        var nextCount = tc.count()
        do {
          oldCount = nextCount
          // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
          // then project the result to obtain the new (x, z) paths.
          tc = tc.union(tc.join(edges).map(x => (x._2._2, x._2._1))).distinct().cache()
          nextCount = tc.count()
        } while (nextCount != oldCount)
    
        println("TC has " + tc.count() + " edges.")
        spark.stop()
      }
    }
    // scalastyle:on println
  • 相关阅读:
    pip 8 安装
    zabbix server配置文件
    双代号网络图、双代号时标网络图
    logrotate
    tsql 执行存储过程
    dos 加用户
    Visual Studio (VS IDE) 你必须知道的功能和技巧
    格式化数字字符串 与C#变量
    .NET中的字符串你了解多少?
    新手如何有效地学习.NET
  • 原文地址:https://www.cnblogs.com/zlslch/p/7457244.html
Copyright © 2011-2022 走看看