zoukankan      html  css  js  c++  java
  • DataFrame和python中数据结构互相转换

    有时候DataFrame,我们不一定要保存成文件、或者入数据库,而是希望保存成其它的格式,比如字典、列表、json等等。当然,读取DataFrame也不一定非要从文件、或者数据库,根据现有的数据生成DataFrame也是可以的,那么该怎么做呢?我们来看一下

    一 . DataFrame转成python中的数据格式

    1 . 转成json

    DataFrame转成json,可以使用df.to_json()方法

    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    print(df.to_json())  
    # {"name":{"0":"mashiro","1":"satori","2":"koishi","3":"nagisa"},"age":{"0":17,"1":17,"2":16,"3":21}}

    我们看到虽然转化成了json,但是有些不完美,那就是它把索引也算进去了

    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    # 如果不想加索引的话,那么指定index=False即可
    try:
        print(df.to_json(index=False))
    except Exception as e:
        print(e)  # 'index=False' is only valid when 'orient' is 'split' or 'table'
    # 但是它报错了,说如果index=False,那么orient必须指定我split或者table

    我们看一下这个orient是什么

    首先orient可以有如下取值:split、records、index、columns、values、table

    我们分别演示一下,看看orient取不同的值,结果会有什么变化

    • orient='split'
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    print(df.to_json(orient="split"))
    """
    {
     "columns":["name","age"],
     "index":[0,1,2,3],
     "data":[["mashiro",17],["satori",17],["koishi",16],["nagisa",21]]
    }
    """
    print(df.to_json(orient="split", index=False))
    """
    {
     "columns":["name","age"],
     "data":[["mashiro",17],["satori",17],["koishi",16],["nagisa",21]]
    }
    """

    我们看到会变成三个键值对,分别是列名、索引、数据

    • orient='records'
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    print(df.to_json(orient="records"))
    """
    [{"name":"mashiro","age":17},
     {"name":"satori","age":17},
     {"name":"koishi","age":16},
     {"name":"nagisa","age":21}]
    """

    这种格式的数据是比较常用的,相当于列名和每一行数据组合成一个字典,然后存在一个列表里面。并且我们看到生成json默认跟索引没啥关系,所以不需要、也不可以加index=False

    • orient='index'
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    print(df.to_json(orient="index"))
    """
    {
     "0":{"name":"mashiro","age":17},
     "1":{"name":"satori","age":17},
     "2":{"name":"koishi","age":16},
     "3":{"name":"nagisa","age":21}
    }
    """

    类似于records,只不过这里把字典作为value放在了外层字典里,其中key为对应的索引。当然这里同样不可以加index=False

    • orient='columns'
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    print(df.to_json(orient="columns"))
    """
    {"name":{"0":"mashiro","1":"satori","2":"koishi","3":"nagisa"},"age":{"0":17,"1":17,"2":16,"3":21}}
    """

    我们看到这个和不指定orient得到结果是一样的,其实不指定的话orient默认是columns

    • orient=values
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    print(df.to_json(orient="values"))
    """
    [["mashiro",17],["satori",17],["koishi",16],["nagisa",21]]
    """
    # 我们看到当orient指定为values,会只获取数据
    # 另外这个方式类似于to_numpy
    print(df.to_numpy())
    """
    [['mashiro' 17]
     ['satori' 17]
     ['koishi' 16]
     ['nagisa' 21]]
    """
    orient=table
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    # 以数据库二维表的形式返回
    print(df.to_json(orient="table"))
    """
    {
        "schema": {
            "fields": [{"name": "index", "type": "integer"},
                       {"name": "name", "type": "string"},
                       {"name": "age", "type": "integer"}],
            "primaryKey": ["index"],
            "pandas_version": "0.20.0"
        },
        "data": [{"index": 0, "name": "mashiro", "age": 17},
                 {"index": 1, "name": "satori", "age": 17},
                 {"index": 2, "name": "koishi", "age": 16},
                 {"index": 3, "name": "nagisa", "age": 21}]
    }
    """
    print(df.to_json(orient="table", index=False))
    """
    {
        "schema": {
            "fields": [{"name": "name", "type": "string"},
                       {"name": "age", "type": "integer"}],
            "pandas_version": "0.20.0"
        },
        "data": [{"name": "mashiro", "age": 17},
                 {"name": "satori", "age": 17},
                 {"name": "koishi", "age": 16},
                 {"name": "nagisa", "age": 21}]
    }
    """

    2 . 转成dict

    DataFrame也可以转成字典,转换成字典里面也有一个orient参数,里面有一部分和to_json是类似的。因为json这个数据结构本身就借鉴了python中的字典,是的你没有看错,json这种数据结构参考了python中的字典。

    to_dict中的orient可以有如下取值:dict、list、series、split、records、index,默认是dict

    • orient='dict'
    from pprint import pprint
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    pprint(df.to_dict(orient="dict"))
    """
    {'age': {0: 17, 1: 17, 2: 16, 3: 21},
     'name': {0: 'mashiro', 1: 'satori', 2: 'koishi', 3: 'nagisa'}}
    """
    • orient='list'
    from pprint import pprint
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    pprint(df.to_dict(orient="list"))
    """
    {'age': [17, 17, 16, 21], 'name': ['mashiro', 'satori', 'koishi', 'nagisa']}
    """
    • orient='series'
    from pprint import pprint
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    # 这种结构真的不常用,就是一个key对应一个series
    pprint(df.to_dict(orient="series"))
    """
    {'age': 
    0    17
    1    17
    2    16
    3    21
    Name: age, dtype: int64,
    
    'name': 0    mashiro
    1     satori
    2     koishi
    3     nagisa
    Name: name, dtype: object}
    """
    • orient='split'
    from pprint import pprint
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    pprint(df.to_dict(orient="split"))
    """
    {'columns': ['name', 'age'],
     'data': [['mashiro', 17], ['satori', 17], ['koishi', 16], ['nagisa', 21]],
     'index': [0, 1, 2, 3]}
    """
    • orient='records'
    from pprint import pprint
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    pprint(df.to_dict(orient="records"))
    """
    [{'age': 17, 'name': 'mashiro'},
     {'age': 17, 'name': 'satori'},
     {'age': 16, 'name': 'koishi'},
     {'age': 21, 'name': 'nagisa'}]
    """
    • orient='index'
    from pprint import pprint
    import pandas as pd
    
    df = pd.DataFrame({"name": ["mashiro", "satori", "koishi", "nagisa"],
                       "age": [17, 17, 16, 21]})
    
    pprint(df.to_dict(orient="index"))
    """
    {0: {'age': 17, 'name': 'mashiro'},
     1: {'age': 17, 'name': 'satori'},
     2: {'age': 16, 'name': 'koishi'},
     3: {'age': 21, 'name': 'nagisa'}}
    """

    二 . python中的数据格式转成DataFrame

     1 . 字典转成DataFrame

    import pandas as pd
    
    data = {0: {'age': 17, 'name': 'mashiro'},
            1: {'age': 17, 'name': 'satori'},
            2: {'age': 16, 'name': 'koishi'},
            3: {'age': 21, 'name': 'nagisa'}}
    
    df = pd.DataFrame.from_dict(data)
    # 显然不是我们期待的格式
    print(df)
    """
                0       1       2       3
    age        17      17      16      21
    name  mashiro  satori  koishi  nagisa
    """
    
    df = pd.DataFrame.from_dict(data, orient="index")
    print(df)
    """
       age     name
    0   17  mashiro
    1   17   satori
    2   16   koishi
    3   21   nagisa
    """

    所以df.to_dict和pd.DataFrame.from_json实现的是相反的功能,但是from_dict中的orient参数只有两种选择,要么是index,要么是columns,默认是columns

    from_records

    from_records是专门针对外层是列表的数据

    import pandas as pd
    
    data = [{'age': 17, 'name': 'mashiro'},
            {'age': 17, 'name': 'satori'},
            {'age': 16, 'name': 'koishi'},
            {'age': 21, 'name': 'nagisa'}]
    
    df = pd.DataFrame.from_records(data)
    print(df)
    """
       age     name
    0   17  mashiro
    1   17   satori
    2   16   koishi
    3   21   nagisa
    """

    其实这种数据就是to_dict(orient="records")生成的

  • 相关阅读:
    CtsVerifier-Bluetooth-LE-SEcure-ClientServer-Test测试pass但是无法选择PassButton
    error: 'LOG_TAG' macro redefined
    AndroidBuildSystem资料
    [dumpsys input]dumpsys input没有KeyEvent-KeyCode-MotionEvent键值
    [GTS]GtsSecurityHostTestCases#testNoExemptionsForSocketsBetweenCoreAndVendorBan
    [Gts]Fail-GtsTvTestCases#testLauncherChange
    [Cts-Verifier]waiver-Camera-ITS-Test
    历史角度看Support Library 到 AndroidX
    基于大疆无人机SDK二次开发
    关于Support库28及以上版本无法查看源码问题
  • 原文地址:https://www.cnblogs.com/zmc940317/p/13603108.html
Copyright © 2011-2022 走看看