zoukankan      html  css  js  c++  java
  • 牛客网多校第5场 F take 【思维+数学期望】

    题目:戳这里

    思路来源:视频讲解

    题意:有n个箱子按1...n标号,每个箱子有大小为di的钻石概率为pi,我们初始有个大小为0的钻石,从1到n按顺序打开箱子,遇到比手中大的箱子就换,求交换次数的数学期望。

    解题思路:这题跟上题[点这里]很像,都是找到一个子状态,利用数学期望的可加性,处理求和即可。这里的子状态为每一次交换的状态,即

    前j个比i大的概率积用树状数组维护。

    附ac代码:

      1 #include <cstdio>
      2 #include <cstdlib>
      3 #include <iostream>
      4 #include <cstring>
      5 #include <algorithm>
      6 #include <cmath>
      7 #include <queue>
      8 #include <vector>
      9 #include <string>
     10 #include <map>
     11 #include <set>
     12 using namespace std;
     13 typedef long long ll;
     14 const ll mod = 998244353;
     15 const int maxn = 1e5 + 10;
     16 int n;
     17 struct nod
     18 {
     19     int id;
     20     ll d;
     21     ll p;
     22 }bx[maxn];
     23 bool cmp(nod a, nod b)
     24 {
     25     if(a.d > b.d)   return 1;
     26     else if(a.d == b.d && a.id < b.id) return 1;
     27     return 0;
     28 }
     29 ll pmul(ll a, ll b)
     30 {
     31     ll res = 0;
     32     while(b)
     33     {
     34         if(b&1)
     35             res = (res + a) % mod;
     36         b >>= 1;
     37         a = (a + a) % mod;
     38     }
     39     return res;
     40 }
     41 ll pmod(ll a, ll b)
     42 {
     43     ll res = 1;
     44     while(b)
     45     {
     46         if(b&1)
     47             res = pmul(res, a) % mod;
     48         b >>= 1;
     49         a = pmul(a, a) % mod;
     50     }
     51     return res;
     52 }
     53 ll exgcd(ll a, ll b, ll &x, ll &y)
     54 {
     55     if(a == 0 && b == 0) return -1;
     56     if(b == 0)
     57     {
     58         x = 1;y = 0;
     59         return a;
     60     }
     61     ll d = exgcd(b, a % b, y, x);
     62     y -= a/b*x;
     63     return d;
     64 }
     65 ll mod_rev(ll a, ll n)
     66 {
     67     ll x, y;
     68     ll d = exgcd(a, n, x, y);
     69     if(d == 1) return (x % n + n) % n;
     70     else return -1;
     71 }
     72 int lowbit(int x)
     73 {
     74     return x&(-x);
     75 }
     76 ll c[maxn * 4];
     77 ll getm(int i)
     78 {
     79     ll s = 1;
     80     while(i > 0)
     81     {
     82         s = pmul(s , c[i]) % mod;
     83         i -= lowbit(i);
     84     }
     85     return s;
     86 }
     87 void add(int i, ll val)
     88 {
     89     while(i <= n)
     90     {
     91         c[i] = pmul(c[i], val) %mod;
     92         i += lowbit(i);
     93     }
     94 }
     95 int main()
     96 {
     97 
     98     ll inv = mod_rev(100ll, mod);
     99   //  printf("%lld
    ", inv);
    100     scanf("%d", &n);
    101     for(int i = 0; i < maxn; ++i)
    102         c[i] = 1;
    103     for(int i = 1; i <= n; ++i)
    104     {
    105         scanf("%lld %lld", &bx[i].p, &bx[i].d);
    106         bx[i].id = i;
    107     }
    108     sort(bx + 1, bx + 1 + n, cmp);
    109 
    110     ll ans = 0;
    111     for(int i = 1; i <= n; ++i)
    112     {
    113        // printf("%lld
    ", getm(bx[i].id));
    114         //printf("%lld %lld %d
    ", bx[i].p, bx[i].d, bx[i].id);
    115         ans = (ans + getm(bx[i].id) * bx[i].p % mod * inv % mod) % mod;
    116         add(bx[i].id, ((100 - bx[i].p) * inv) % mod);
    117     }
    118     printf("%lld
    ", ans);
    119 }
    View Code
  • 相关阅读:
    第十四章:(2)Spring Boot 与 分布式 之 Dubbo + Zookeeper
    第十四章:(1)Spring Boot 与 分布式 之 分布式介绍
    第九章:Redis 的Java客户端Jedis
    第十三章:(2)Spring Boot 与 安全 之 SpringBoot + SpringSecurity + Thymeleaf
    第八章:(1)Redis 的复制(Master/Slave)
    java学习
    周末总结4
    java
    Cheatsheet: 2012 12.17 ~ 12.31
    Cheatsheet: 2012 10.01 ~ 10.07
  • 原文地址:https://www.cnblogs.com/zmin/p/9494384.html
Copyright © 2011-2022 走看看