zoukankan      html  css  js  c++  java
  • hdu 数论+ 欧拉函数 1787

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1787

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2239    Accepted Submission(s): 897


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     

     分析:

    1:欧拉函数euler(n)  定义为 小于 n 又和 n 互素的正整数的个数。

    n= p1^r1 * p2 ^r2 * …… * pk^rk

    erler(n)  = n (1- 1/p1) * (1 - 1/p2) * ……*(1- 1/pk)

                = p1^(r1-1)  * p2^(r2 -1)  *   ……* pk^(rk -1) *  (p1 -1) *(p2-1) ……*(pk - 1)

    2:则与n 不互素的个数为 n-1- erler(n)

    代码如下:

    #include<iostream>
    #include<stdlib.h>
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    using namespace std;
    // 欧拉函数
    int euler(int n)
    {
        int ans=1;
        int i;
        for(i=2;i*i <=n;i++)
        {
            if(n%i ==0)
            {
    
                ans*=i-1;
                n/=i;
                while(n%i ==0)
                {
                    ans*=i;
                    n/=i;
                }
            }
        }
        if(n!=1)     // 最后一个因子为n!=1,保存
            ans*=n-1;
        return ans;
    }
    
    int main()
    {
        int n;
        while(scanf("%d",&n)&& n)
        {
            printf("%d
    ", n-1 - euler(n));
        }
        return 0;
    }
  • 相关阅读:
    Jmeter四种参数化方式
    微信公众号开发--服务器接入
    IIS调试程序
    vs连接GitHub
    vs2013 卸载
    Edge,IE浏览器 兼容模式设置
    XML非法字符的处理
    SQL Server Union联合查询
    SQL Server NULL的正确用法
    SQL Server Like 与 通配符
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3594336.html
Copyright © 2011-2022 走看看