zoukankan      html  css  js  c++  java
  • hdu 数论+ 欧拉函数 1787

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1787

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2239    Accepted Submission(s): 897


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     

     分析:

    1:欧拉函数euler(n)  定义为 小于 n 又和 n 互素的正整数的个数。

    n= p1^r1 * p2 ^r2 * …… * pk^rk

    erler(n)  = n (1- 1/p1) * (1 - 1/p2) * ……*(1- 1/pk)

                = p1^(r1-1)  * p2^(r2 -1)  *   ……* pk^(rk -1) *  (p1 -1) *(p2-1) ……*(pk - 1)

    2:则与n 不互素的个数为 n-1- erler(n)

    代码如下:

    #include<iostream>
    #include<stdlib.h>
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    using namespace std;
    // 欧拉函数
    int euler(int n)
    {
        int ans=1;
        int i;
        for(i=2;i*i <=n;i++)
        {
            if(n%i ==0)
            {
    
                ans*=i-1;
                n/=i;
                while(n%i ==0)
                {
                    ans*=i;
                    n/=i;
                }
            }
        }
        if(n!=1)     // 最后一个因子为n!=1,保存
            ans*=n-1;
        return ans;
    }
    
    int main()
    {
        int n;
        while(scanf("%d",&n)&& n)
        {
            printf("%d
    ", n-1 - euler(n));
        }
        return 0;
    }
  • 相关阅读:
    2017.04.05-2017.07.14封闭开发总结
    Android读取Manifest文件下Application等节点下的metadata自定义数据
    MyEclipse Hibernate Reverse Engineering 找不到项目错误
    web服务器决定支持多少人同时在线的因素
    配置servers时,错误:Setting property 'source' to 'org.eclipse.jst.jee.server:hczm' did not find a matching property
    查看端口被占用
    高德开发 android 出现 key 鉴权失败
    Android EventBus
    javascript 中的数据驱动页面模式
    读书笔记之
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3594336.html
Copyright © 2011-2022 走看看