zoukankan      html  css  js  c++  java
  • bzoj 1038 瞭望塔 半平面交 + 最小值 枚举

    题目来源:

    http://61.187.179.132/JudgeOnline/problem.php?id=1038

    给出n个点,从 x值较小到较大给出, 连成的一条折线, 求从这折线上一点放一个垂直的杆,在杆顶能看到整个折线。 求杆的最小长度。

    分析: 显然杆的最小摆放位置在 折线顶点 或者 半平面交的交点处。

    代码如下:

    const double EPS = 1e-10 ;
    const int Max_N =  305 ;
    const double inf = 1e10 ; // 这个 开小了 1e9 都WA了好几次
    double add(double a, double b){
        return (fabs(a + b) < EPS * (fabs(a) + fabs(b)) ) ?  0 : (a + b );
    }
    struct Point {
        double x, y;
        Point(){}
        Point(double x, double y):x(x) , y(y){}
        Point operator - (Point a){
            return Point(add(x , -a.x) , add(y , -a.y)) ;
        }
        Point operator + (Point a){
            return Point(add(x , a.x) , add(y , a.y)) ;
        }
        double operator ^(Point a){
            return add(x * a.y ,  - y * a.x) ;
        }
        Point operator * (double d){
            return Point(x * d , y * d) ;
        }
        void write(){
            printf("%lf %lf
    " , x , y) ;
        }
    };
    struct Line{  //有向直线
        Point st, ed;
        Line(){}
        Line(Point s, Point e){
            st = s ;
            ed = e ;
        }
        bool onRight(Point a){ //点a在直线向量的右边
            return ((ed - st)^(a - st)) < 0 ;
        }
        bool parallel(Line l){
            return ((ed -st)^(l.ed - l.st)) == 0 ;
        }
        Point Crossnode(Line l){ //两直线的交点
            double t = (l.ed - l.st) ^(l.st - st) ;
            double t1 = (l.ed - l.st)^(ed - st) ;
            return st + (ed - st)*(t / t1) ;
        }
        bool onseg(Point a){
            return ((a.x - st.x)*(a.x - ed.x) <EPS) && ((a.y - st.y)*(a.y - ed.y) <EPS) ;
        }
        double jijiao(){
            return atan2(ed.y - st.y , ed.x - st.x) ;
        }
        void write(){
            printf("%lf %lf %lf %lf
    " , st.x ,st.y ,ed.x ,ed.y) ;
        }
    };
    //排序函数 [优先顺序:1极角  2. 前面的直线在后面的左边 ]
    bool operator < (Line l, Line r){
        double lp = l.jijiao() ;
        double rp = r.jijiao() ;
        if( fabs(lp - rp) > EPS)
            return lp < rp ;
        return ((l.st - r.st)^(r.ed - r.st)) < -EPS ;
    }
    //用于计算的双端队列
    Line dequeue[Max_N] ;
    Point pt[Max_N] ;
    int halfPanelCross(Line line[] , int ln){
        int i, tn;
        sort(line, line  + ln ) ;
    // 平面在向量左边 的筛选
        for(i = tn = 1 ; i < ln ; i++){// 处理极角相同的,选择向量方向最左边的
            if(fabs(line[i].jijiao() - line[i -1].jijiao())  > EPS)
                line[tn++] = line[i] ;
        }
        ln = tn ;
        int bot = 0 , top = 1 ;
        dequeue[0] = line[0] ;
        dequeue[1] = line[1] ;
        for(i = 2 ; i < ln ; i++){
            if(dequeue[top].parallel(dequeue[top - 1])|| dequeue[bot].parallel(dequeue[bot + 1]))
                return 0 ;
            while(bot < top &&
                  line[i].onRight(dequeue[top].Crossnode(dequeue[top - 1])))
                top -- ;
            while(bot < top &&
                 line[i].onRight(dequeue[bot].Crossnode(dequeue[bot + 1])))
                bot ++ ;
            dequeue[++ top] = line[i] ;
        }
        while(bot < top &&
              dequeue[bot].onRight(dequeue[top].Crossnode(dequeue[top -1])))
            top -- ;
        while(bot < top &&
              dequeue[top].onRight(dequeue[bot].Crossnode(dequeue[bot + 1])))
            bot ++ ;
        if(top <= bot + 1) return 0 ;  // 若队列为空, 则空集
        int n = 0 ;
        //计算交点(注意不同直线形成的交点可能重合) 半平面交是凸多边形
        for(i = bot ; i < top ; i++)
            pt[n ++] = dequeue[i].Crossnode(dequeue[i + 1]) ;
        if(bot < top +1)
            pt[n ++] = dequeue[bot].Crossnode(dequeue[top]) ;
        return n ;
    }
    Line List[Max_N] ;
    Point p[Max_N] ;
    int n;
    void go(){
        int i , j;
        Point s, t ;
        Line tmp ;
        double ans = inf;
        i = n  -1 ;
        List[i ++] = Line(Point(-inf ,-inf) , Point(inf , -inf)) ;
        List[i ++] = Line(Point(inf ,-inf) , Point(inf , inf)) ;
        List[i ++] = Line(Point(inf ,inf) , Point(-inf , inf)) ;
        List[i ++] = Line(Point(-inf ,inf) , Point(-inf , -inf)) ;
        int ttn = i ;
        int tn = halfPanelCross(List , ttn) ;
        for(i = 0 ; i < n ; i++){
            s = p[i] ;
            t.x = s.x  , t.y = 1000 ;
            for( j = 0 ; j < tn ; j++){
                tmp = Line(pt[j] , pt[(j + 1) % tn]) ;
                Point cross = Line(s ,t).Crossnode(tmp) ;
                if(tmp.onseg(cross))
                    ans = min(ans , cross.y - s.y) ;
            }
        }
        for(i = 0 ; i < tn ; i++){
            s = pt[i] ;
            t.x = s.x , t.y = 1000 ;
            for(j = 0 ; j < n - 1 ; j++){
                tmp = Line(p[j] , p[j + 1]) ;
                Point cross = Line(s,t).Crossnode(tmp) ;
                if(tmp.onseg(cross))
                    ans = min(ans , s.y - cross.y) ;
            }
        }
        printf("%.3lf
    " , ans + EPS) ;
    }
    int main(){
        int i ;
        while(scanf("%d" , &n) != EOF){
            for(i = 0 ; i < n ; i++)
                scanf("%lf" , &p[i].x) ;
            for(i = 0 ; i < n ; i++)
                scanf("%lf" , &p[i].y) ;
            for(i = 0 ; i < n-1 ; i++){
                    List[i] = Line(p[i] , p[i + 1]) ;
            }
            go() ;
        }
    }
  • 相关阅读:
    prometheus基础概念
    Prometheus告警处理
    什么是prometheus?
    Prometheus的PromQL
    Prometheus的Exporter详解
    leetcode unique path I&&II
    leetcode Palindrome Partitioning
    leetcode 最大子矩阵(5星推荐)
    leetcode Sum Root to Leaf Numbers 二叉树所有叶节点的路径和
    leetcode Spiral Matrix I
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3730248.html
Copyright © 2011-2022 走看看