zoukankan      html  css  js  c++  java
  • 软件测试第三次作业

    问题描述:

     Use the following method printPrimes() for questions a–d. 

    /**
    * Finds and prints n prime integers
    * Jeff Offutt, Spring 2003
    */


    private static void printPrimes(int n) {
      int curPrime; //Value currently considered for primeness
      int numPrimes; // Number of primes found so far;
      boolean isPrime; //Is curPrime prime?

      int[] primes = new int[MAXPRIMES];// The list of primes.

      // Initialize 2 into the list of primes.
      primes[0] = 2;
      numPrimes = 1;
      curPrime = 2;
      while(numPrimes < n) {
        curPrime++; // next number to consider...
        isPrime = true;
        for(int i = 0; i <= numPrimes; i++ ) {
          //for each previous prime.
          if(isDvisible(primes[i],curPrime)) {
            //Found a divisor, curPrime is not prime.
            isPrime = false;
            break;
          }
        }
        if(isPrime) {
          // save it!
          primes[numPrimes] = curPrime;
          numPrimes++;

        }
      }// End while

      // print all the primes out
      for(int i = 0; i < numPrimes; i++) {
        System.out.println("Prime: " + primes[i] );

      }

    }// End printPrimes.


    (a) Draw the control flow graph for the printPrime() method.

    ans:


    (b) Consider test cases ti = (n = 3) and t2 = ( n = 5). Although these tour the same prime paths in printPrime(), they don't necessarily find
    the same faults. Design a simple fault that t2 would be more likely to discover than t1 would.

    ans:

      the condition of while statement: numPrimes < n -> numPrimes <= n-1

      the condition of the for statement in while: i <= numPrimes -> i < numPrimes 
    (c) For printPrime(), find a test case such that the corresponding test path visits the edge that connects the beginning of the while statement
    to the for statement without going through the body of the while loop. 

    ans: n = 1 or n = 0
    (d) Enumerate the test requirements for node coverage, edge coverage,and prime path coverage for the path for printPrimes().

    ans:

    node coverage:

      nodes: [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]

      test case: [1,2,3,4,5,6,7,8,2,9,10,11,10,12]

    edge coverage:

      edges: [1,2], [2,3], [2,9], [3,4], [4,5], [4,7], [5,6], [5,4], [6,7], [7,2], [7,8], [8,2], [9,10], [10,11], [10,12], [11,10]

      test case: [1,2,3,4,5,4,5,6,7,8,2,9,10,11,10,12], [1,2,3,4,7,2,9,10,12]

    prime path coverage:

      prime path: [1,2,3,4,5,6,7,8], [1,2,3,4,7,8], [1,2,9,10,11], [1,2,9,10,12]

            [2,3,4,5,6,7,8,2], [2,3,4,5,6,7,2], [2,3,4,7,8,2], [2,3,4,7,2]

              [3,4,5,6,7,8,2,9,10,11], [3,4,5,6,7,2,9,10,11], [3,4,5,6,7,8,2,9,10,12], [3,4,5,6,7,2,9,10,12], [3,4,7,2,9,10,11], [3,4,7,2,9,10,12], [3,4,7,8,2,9,10,11], [3,4,7,8,2,9,10,12]

            [4,5,4]

            [5,4,5], [5,4,7,2,9,10,11], [5,4,7,2,9,10,12], [5,4,7,8,2,9,10,12], [5,4,7,8,2,9,10,11]

            [7,2,3,4,5,6,7], [7,2,3,4,7]

            [8,2,3,4,5,6,7,8], [8,2,3,4,7,8]

            [10,11,10]

            [11,10,11], [11,10,12]

      test case: [1,2,9,10,12], [1,2,9,10,11,10,11,10,12]

             [1,2,3,4,5,4,7,2,9,10,12], [1,2,3,4,5,4,7,2,9,10,11]

             [1,2,3,4,5,4,7,8,2,9,10,12], [1,2,3,4,5,4,7,8,2,9,10,11]

             [1,2,3,4,5,6,7,2,9,10,12], [1,2,3,4,5,6,7,2,9,10,11]

             [1,2,3,4,5,6,7,8,2,9,10,12], [1,2,3,4,5,6,7,8,2,9,10,11]

             [1,2,3,4,5,4,5,6,7,2,9,10,12], [1,2,3,4,5,4,5,6,7,2,9,10,11]

             [1,2,3,4,7,2,9,10,12], [1,2,3,4,7,2,9,10,11]        

                            [1,2,3,4,7,8,2,9,10,12], [1,2,3,4,7,8,2,9,10,11]

             

  • 相关阅读:
    PYTHON简介
    zabbix4.0搭建2
    zabbix4.0搭建1
    zabbix监控
    Linux中vim编辑命令
    零基础逆向工程25_C++_02_类的成员权限_虚函数_模板
    零基础逆向工程24_C++_01_类_this指针_继承本质_多层继承
    零基础逆向工程23_PE结构07_重定位表_IAT表(待补充)
    零基础逆向工程22_PE结构06_导入表
    零基础逆向工程21_PE结构05_数据目录表_导出表
  • 原文地址:https://www.cnblogs.com/znnby1997/p/8645405.html
Copyright © 2011-2022 走看看