zoukankan      html  css  js  c++  java
  • POJ 1163 The Triangle

    Description

    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    (Figure 1)
    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

    Input

    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

    Output

    Your program is to write to standard output. The highest sum is written as an integer.

    Sample Input

    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    解题思路

      DP:(自顶向下)

    1.   状态表示f[i,j]:
      1. 集合:所有从起点走到(i,j)的路径
      2. 属性:所有路径上数字之和的最大值(Max)【属性一般为 Max,Min, 数量】
    2.   状态计算:  f[i,j] = a[i,j] + max(f[i - 1[j - 1],f[i - 1][j])
     1 #include<iostream>
     2 using namespace std;
     3 const int INF = 1e9;
     4 const int N = 110;
     5 int n;
     6 int f[N][N], a[N][N];
     7 void init(){
     8     
     9     for(int i = 0; i <= n; i++){
    10         for(int j = 0; j <= i + 1; j++){
    11             f[i][j] = -INF;
    12         }
    13     }
    14     f[1][1] = a[1][1];
    15 }
    16 int main(){
    17     cin >> n;
    18     for(int i = 1; i <= n; i++){
    19         for(int j = 1; j <= i; j++){
    20             cin >> a[i][j];
    21         }
    22     }
    23     init();
    24     for(int i = 2; i <= n; i++){
    25         for(int j = 1; j <= i; j++){
    26             f[i][j] = a[i][j] + max(f[i - 1][j - 1], f[i - 1][j]);
    27         }
    28     }
    29     int ans = -INF;
    30     for(int i = 1; i <= n; i++){
    31         ans = max(ans, f[n][i]);
    32     }
    33     cout << ans << endl;
    34     return 0;
    35 } 
    数字三角形
  • 相关阅读:
    04_移动端-伪元素选择器
    03_移动端-结构伪类选择器
    02_移动端-属性选择器
    Dva+Antd创建React项目(一)
    Windows 10 使用打印机扫描
    中间件-redis
    #期望dp#51nod 2015 诺德街
    Codeforces Round #685 (Div. 2)
    USACO 4.2
    #保序回归问题,单调栈,二分#洛谷 5294 [HNOI2019]序列
  • 原文地址:https://www.cnblogs.com/zoom1109/p/11187441.html
Copyright © 2011-2022 走看看