zoukankan      html  css  js  c++  java
  • 判直线和线段相交——poj3304

    /*
    线段和直线非严格相交:线段两点和直线的叉积 
    */
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    #define N 405
    #define db double
    
    const db eps=1e-8;
    int sign(db k){
        if (k>eps) return 1; else if (k<-eps) return -1; return 0;
    }
    int cmp(db k1,db k2){return sign(k1-k2);}
    
    struct point{
        db x,y;
        point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
        point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
        point operator * (db k1) const{return (point){x*k1,y*k1};}
        point operator / (db k1) const{return (point){x/k1,y/k1};}
        int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
        // 逆时针旋转 
        point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
        point turn90(){return (point){-y,x};}
        bool operator < (const point k1) const{
            int a=cmp(x,k1.x);
            if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
        }
        db abs(){return sqrt(x*x+y*y);}
        db abs2(){return x*x+y*y;}
        db dis(point k1){return ((*this)-k1).abs();}
        point unit(){db w=abs(); return (point){x/w,y/w};}
        void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
        void print(){printf("%.11lf %.11lf
    ",x,y);}
        db getw(){return atan2(y,x);} 
        point getdel(){if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);}
        int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
    };
    struct line{
        point p[2];
        line(){}
        line(point k1,point k2){p[0]=k1; p[1]=k2;}
        point & operator [] (int k){return p[k];}
    };
    db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
    db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
    
    point p[N];
    line lines[N];
    int n;
    
    int checkLS(point k1,point k2,point k3,point k4){//判 L(k1,k2) 和 S(k3,k4)交点 
        return sign(cross(k3-k1,k2-k1))*sign(cross(k4-k1,k2-k1))<=0;
    }
    
    int check(point k1,point k2){
        if(sign(k1.dis(k2))==0)return false;
        for(int i=1;i<=n;i++)
            if(!checkLS(k1,k2,lines[i][0],lines[i][1]))return 0;
        return 1;
    }
    
    int main(){
        int t;cin>>t;
        while(t--){
            scanf("%d",&n);
            for(int i=1;i<=n;i++){
                point k1,k2;
                scanf("%lf%lf%lf%lf",&k1.x,&k1.y,&k2.x,&k2.y);
                lines[i]=line(k1,k2);
            }
            
            int flag=0;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++){
                    if(check(lines[i][0],lines[j][0]) || check(lines[i][0],lines[j][1]) || 
                        check(lines[i][1],lines[j][1]) || check(lines[i][1],lines[j][0]))
                        flag=1;
                }
            
            if(flag)puts("Yes!");
            else puts("No!"); 
        }
    }
    /*
    2
    3
    0 0 2 0
    0 1 2 1
    1 2 1 1
    */
  • 相关阅读:
    bootstrap不同屏幕区分数值
    jq星星评分
    大話西遊
    HDU 5353 Average 贪心
    HDU 5358 First One 数学+尺取法
    生活感受
    HDU 4372 Count the Buildings 组合数学
    暑假集训-合训第九场
    一些资料
    多校-HDU 5351 MZL's Border 数学规律
  • 原文地址:https://www.cnblogs.com/zsben991126/p/12318533.html
Copyright © 2011-2022 走看看