首先要了解对踵点的定义https://blog.csdn.net/qq_34921856/article/details/80689629
然后是旋转卡壳算法的全家桶 https://blog.csdn.net/qq_34921856/article/details/80690822
但是代码实现有点复杂,单单是求点集直径更通俗的博客 https://jvruo.com/archives/79/
模板有问题,测了老半天
#include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<vector> #include<algorithm> using namespace std; typedef double db; const db eps=1e-8; const db pi=acos(-1); int sign(db k){ if (k>eps) return 1; else if (k<-eps) return -1; return 0; } int cmp(db k1,db k2){return sign(k1-k2);} int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内 struct point{ db x,y; point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};} point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};} point operator * (db k1) const{return (point){x*k1,y*k1};} point operator / (db k1) const{return (point){x/k1,y/k1};} bool operator < (const point k1) const{ int a=cmp(x,k1.x); if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1; } db abs(){return sqrt(x*x+y*y);} db abs2(){return x*x+y*y;} db dis(point k1){return ((*this)-k1).abs();} }; int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);} db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;} db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;} int onS(point k1,point k2,point q){return inmid(k1,k2,q)&&sign(cross(k1-q,k2-k1))==0;} int checkconvex(vector<point>A){ //判断是否是凸包 int n=A.size(); A.push_back(A[0]); A.push_back(A[1]); for (int i=0;i<n;i++) if (sign(cross(A[i+1]-A[i],A[i+2]-A[i]))==-1) return 0; return 1; } vector<point> ConvexHull(vector<point>A,int flag=1){ // 求凸包:flag=0 不严格 flag=1 严格 int n=A.size(); vector<point>ans(n*2); sort(A.begin(),A.end()); int now=-1; for (int i=0;i<A.size();i++){ while (now>0&&sign(cross(ans[now]-ans[now-1],A[i]-ans[now-1]))<flag) now--; ans[++now]=A[i]; } int pre=now; for (int i=n-2;i>=0;i--){ while (now>pre&&sign(cross(ans[now]-ans[now-1],A[i]-ans[now-1]))<flag) now--; ans[++now]=A[i]; } ans.resize(now); return ans; } db RC(vector<point> q) { if(q.size()==2)return (q[1]-q[0]).abs2(); q.push_back(q[0]); int now=1; db ans=0; for(int i=0;i<q.size()-1;i++)//逆时针枚举凸包上的边(i,i+1) { while(cross((q[i+1]-q[i]),(q[now]-q[i]))<cross((q[i+1]-q[i]),(q[now+1]-q[i]))) { now++; if(now==q.size()-1)now=0; } ans=max(ans,(q[now]-q[i]).abs2()); } return ans; } int n; vector<point> v; int main(){ cin>>n; v.clear(); for(int i=1;i<=n;i++){ point p; scanf("%lf%lf",&p.x,&p.y); v.push_back(p); } vector<point>res=ConvexHull(v,1); db ans=RC(res); printf("%lld ",(long long)(ans)); }