zoukankan      html  css  js  c++  java
  • 基于binlog来分析mysql的行记录修改情况

    https://www.cnblogs.com/xinysu/archive/2017/05/26/6908722.html

    import pymysql
    from pymysql.cursors import DictCursor
    import re
    import os
    import sys
    import datetime
    import time
    import logging
    import importlib
    importlib.reload(logging)
    logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ')


    usage=''' usage: python [script's path] [option]
    ALL options need to assign:

    -h : host, the database host,which database will store the results after analysis
    -u : user, the db user
    -p : password, the db user's password
    -P : port, the db port
    -f : file path, the binlog file
    -tr : table name for record , the table name to store the row record
    -tt : table name for transaction, the table name to store transactions
    Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow

    '''

    class queryanalyse:
    def __init__(self):
    #初始化
    self.host=''
    self.user=''
    self.password=''
    self.port='3306'
    self.fpath=''
    self.tbrow=''
    self.tbtran=''

    self._get_db()
    logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran))

    self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8')
    self.cur = self.mysqlconn.cursor(cursor=DictCursor)
    logging.info('MySQL which userd to store binlog event connection is ok')

    self.begin_time=''
    self.end_time=''
    self.db_name=''
    self.tb_name=''

    def _get_db(self):
    #解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式,
    #由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理
    logging.info('begin to assign values to parameters')
    if len(sys.argv) == 1:
    print(usage)
    sys.exit(1)
    elif sys.argv[1] == '--help':
    print(usage)
    sys.exit()
    elif len(sys.argv) > 2:
    for i in sys.argv[1:]:
    _argv = i.split('=')
    if _argv[0] == '-h':
    self.host = _argv[1]
    elif _argv[0] == '-u':
    self.user = _argv[1]
    elif _argv[0] == '-P':
    self.port = int(_argv[1])
    elif _argv[0] == '-f':
    self.fpath = _argv[1]
    elif _argv[0] == '-tr':
    self.tbrow = _argv[1]
    elif _argv[0] == '-tt':
    self.tbtran = _argv[1]
    elif _argv[0] == '-p':
    self.password = _argv[1]
    else:
    print(usage)

    def create_tab(self):
    #创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况
    #注意,一个事务可以存储多行数据修改的情况
    logging.info('creating table ...')
    create_tb_sql ='''CREATE TABLE IF NOT EXISTS {} (
    `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
    `begin_time` datetime NOT NULL,
    `end_time` datetime NOT NULL,
    PRIMARY KEY (`auto_id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
    CREATE TABLE IF NOT EXISTS {} (
    `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
    `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete',
    `tran_num` int(11) NOT NULL COMMENT 'the transaction number',
    `dbname` varchar(50) NOT NULL,
    `tbname` varchar(50) NOT NULL,
    PRIMARY KEY (`auto_id`),
    KEY `sqltype` (`sqltype`),
    KEY `dbname` (`dbname`),
    KEY `tbname` (`tbname`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
    truncate table {};
    truncate table {};
    '''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)

    self.cur.execute(create_tb_sql)
    logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))

    def rowrecord(self):
    #处理每一行binlog
    #事务的结束采用 'Xid =' 来划分
    #分析结果,按照一个事务为单位存储提交一次到db
    try:
    tran_num=1 #事务数
    record_sql='' #行记录的insert sql
    tran_sql='' #事务的insert sql

    self.create_tab()

    with open(self.fpath,'r') as binlog_file:
    logging.info('begining to analyze the binlog file ,this may be take a long time !!!')
    logging.info('analyzing...')

    for bline in binlog_file:

    if bline.find('Table_map:') != -1:
    l = bline.index('server')
    n = bline.index('Table_map')
    begin_time = bline[:l:].rstrip(' ').replace('#', '20')

    if record_sql=='':
    self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]

    self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]
    self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]
    bline=''

    elif bline.startswith('### INSERT INTO'):
    record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)

    elif bline.startswith('### UPDATE'):
    record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)

    elif bline.startswith('### DELETE FROM'):
    record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)

    elif bline.find('Xid =') != -1:

    l = bline.index('server')
    end_time = bline[:l:].rstrip(' ').replace('#', '20')
    self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]
    tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)

    self.cur.execute(tran_sql)
    self.mysqlconn.commit()
    record_sql = ''
    tran_num += 1

    except Exception:
    return 'funtion rowrecord error'

    def binlogdesc(self):
    sql=''
    t_num=0
    r_num=0
    logging.info('Analysed result printing... ')
    #分析总的事务数跟行修改数量
    sql="select 'tbtran' name,count(*) nums from {} union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)
    self.cur.execute(sql)
    rows=self.cur.fetchall()
    for row in rows:
    if row['name']=='tbtran':
    t_num = row['nums']
    else:
    r_num = row['nums']
    print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))

    # 计算 最耗时 的单个事务
    # 分析每个事务的耗时情况,分为5个时间段来描述
    # 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second
    sql='''select
    count(case when cost_sec between 0 and 1 then 1 end ) cos_1,
    count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,
    count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,
    count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,
    count(case when cost_sec >30.1 then 1 end ) cos_more,
    max(cost_sec) cos_max
    from
    (
    select
    auto_id,timestampdiff(second,begin_time,end_time) cost_sec
    from {}
    ) a;'''.format(self.tbtran)
    self.cur.execute(sql)
    rows=self.cur.fetchall()

    for row in rows:
    print('The most cost time : {} '.format(row['cos_max']))
    print('The distribution map of each transaction costed time: ')
    print('Cost time between 0 and 1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))
    print('Cost time between 1.1 and 5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))
    print('Cost time between 5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))
    print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))
    print('Cost time > 30.1 : {} , {}% '.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))

    # 计算 单个事务影响行数最多 的行数量
    # 分析每个事务 影响行数 情况,分为5个梯度来描述
    sql='''select
    count(case when nums between 0 and 10 then 1 end ) row_1,
    count(case when nums between 11 and 100 then 1 end ) row_2,
    count(case when nums between 101 and 1000 then 1 end ) row_3,
    count(case when nums between 1001 and 10000 then 1 end ) row_4,
    count(case when nums >10001 then 1 end ) row_5,
    max(nums) row_max
    from
    (
    select
    count(*) nums
    from {} group by tran_num
    ) a;'''.format(self.tbrow)
    self.cur.execute(sql)
    rows=self.cur.fetchall()

    for row in rows:
    print('The most changed rows for each row: {} '.format(row['row_max']))
    print('The distribution map of each transaction changed rows : ')
    print('Changed rows between 1 and 10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))
    print('Changed rows between 11 and 100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))
    print('Changed rows between 101 and 1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))
    print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))
    print('Changed rows > 10001 : {} , {}% '.format(row['row_5'], int(row['row_5'] * 100 / t_num)))

    # 分析 各个行数 DML的类型情况
    # 描述 delete,insert,update的分布情况
    sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)
    self.cur.execute(sql)
    rows=self.cur.fetchall()

    print('The distribution map of the {} changed rows : '.format(r_num))
    for row in rows:

    if row['sqltype']==1:
    print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))
    if row['sqltype']==2:
    print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))
    if row['sqltype']==3:
    print('DELETE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))

    # 描述 影响行数 最多的表格
    # 可以分析是哪些表格频繁操作,这里显示前10个table name
    sql = '''select
    dbname,tbname ,
    count(*) ALL_rows,
    count(*)*100/{} per,
    count(case when sqltype=1 then 1 end) INSERT_rows,
    count(case when sqltype=2 then 1 end) UPDATE_rows,
    count(case when sqltype=3 then 1 end) DELETE_rows
    from {}
    group by dbname,tbname
    order by ALL_rows desc
    limit 10;'''.format(r_num,self.tbrow)
    self.cur.execute(sql)
    rows = self.cur.fetchall()

    print('The distribution map of the {} changed rows : '.format(r_num))
    print('tablename'.ljust(50),
    '|','changed_rows'.center(15),
    '|','percent'.center(10),
    '|','insert_rows'.center(18),
    '|','update_rows'.center(18),
    '|','delete_rows'.center(18)
    )
    print('-------------------------------------------------------------------------------------------------------------------------------------------------')
    for row in rows:
    print((row['dbname']+'.'+row['tbname']).ljust(50),
    '|',str(row['ALL_rows']).rjust(15),
    '|',(str(int(row['per']))+'%').rjust(10),
    '|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),
    '|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),
    '|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),
    )
    print(' ')

    logging.info('Finished to analyse the binlog file !!!')

    def closeconn(self):
    self.cur.close()
    logging.info('release db connections ')

    def main():
    p = queryanalyse()
    p.rowrecord()
    p.binlogdesc()
    p.closeconn()

    if __name__ == "__main__":
    main()

  • 相关阅读:
    jquery 筛选元素(1)
    jquery操作元素的位置
    jquery 操作css 选择器
    jquery 操作css 尺寸
    jquery 标签中的属性操作
    jquery基本选择器
    jquery表单属性筛选元素
    jquery属性值选择器
    jquery 层级选择器
    jquery的基本选择器
  • 原文地址:https://www.cnblogs.com/moss_tan_jun/p/8001455.html
Copyright © 2011-2022 走看看