zoukankan      html  css  js  c++  java
  • HDU 1024 Max Sum Plus Plus

    http://acm.hdu.edu.cn/showproblem.php?pid=1024

    题意:可不连续的m个子段的最大和

    分析:首先由于n很大,所以需要运用滚动数组,其次单个值也不小所以得考虑int64
              接下来就是动态规划的思路了,这道题想了大概一上午没什么好思路,只想到第j个数要不属于第i组,要不独自成组
              所以我只想到的转移方程为dp[i,j]=max(dp[i-1,j-1],dp[i][j-1])+num[j]
              其中dp[i,j]为j个数分成i组的时候其最大和是多少
                    dp[i-1,j-1]表示第j个数独自成组
                    dp[i,j-1]表示第j个数合到前一个数
              这个思路只对了一半,错在当j要独自成组的时候,并不一定dp[i-1,j-1]就是最大值,还有可能j-1这个数没有要,
                 dp[i-1,j-2] 或者dp[i-1,j-3]是最大的
              根据这个,我又重新找出dp[i-1,k](i-1<=k<j)中的最大值,但是此时的dp循环是三个for循环了,果断超时。
              后来看了别人代码,才了解定义一个MAX,一直记录着对于当前i的某个j的最大dp[i-1,k],由于对于j来说,必定从i开始循环过来的,所以MAX就是记录以前的最大值。

              然后还要注意的是,循环当前i的时候,需要剩下m-i个数的,让后面的人能够有数可用

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int MN=1000010;
    const int INF=999999999;
    #define LL long long
    //dp[i,j]表示i个组里有j物品的最大和
    LL dp[2][MN];
    int num[MN];
    
    int main()
    {
        int i,j,n,m,k;
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            for(i=1;i<=n;i++)
            {
                dp[0][i]=dp[1][i]=0;
                scanf("%d",&num[i]);
            }
            dp[0][0]=dp[1][0]=0;
            int t=1;
            for(i=1;i<=m;i++)
            {
                dp[t][i]=dp[1-t][i-1]+num[i];
                LL MAX=dp[1-t][i-1];
                for(j=i+1;j<=n-(m-i);j++)
                {
                    MAX=max(MAX,dp[1-t][j-1]);
                    dp[t][j]=max(MAX,dp[t][j-1])+num[j];
                }
                t=1-t;
            }
            t=1-t;
            LL MAX=-INF;
            for(i=m;i<=n;i++)
            {
                if(MAX<dp[t][i]) MAX=dp[t][i];
            }
            printf("%I64d
    ",MAX);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    冒泡 希尔 快速 插入 堆 基数
    排序总结
    软件工程(齐治昌-谭庆平-宁洪)
    Java简单计算器
    插入排序
    Android中theme.xml与style.xml的区别
    activity theme parent 属性浅析
    xml中不能直接添加ViewGroup
    Java中对象的上转型对象
    Android原理View、ViewGroup
  • 原文地址:https://www.cnblogs.com/zsboy/p/3301558.html
Copyright © 2011-2022 走看看