「JSOI2015」染色问题
虽然不是第一反应,不过还是想到了要容斥。
题意转化:需要求满足 (N + M + C) 个条件的方案数。
然后我们就枚举三个数 (i, j, k) ,表示当前方案中,至少不用 (k) 种颜色,至少不涂 (i) 行、至少不涂 (j) 列。
然后直接组合数算(式子不难看懂),最后容斥即可。
那么写出来就是:
[ans = sum_{i = 0}^n sum_{j = 0}^m sum_{k = 0}^c (-1)^{i + j + k} (c - k + 1)^{(n - i) imes (m - j)} {n choose i}{m choose j}{c choose k}
]
参考代码:
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 404, p = 1e9 + 7;
int n, m, c, N, x, ans, C[_][_], pow[_][_ * _];
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(m), read(c);
if (N < n) N = n; if (N < m) N = m; if (N < c) N = c;
for (rg int i = 0; i <= N; ++i) C[i][0] = 1;
for (rg int i = 1; i <= N; ++i)
for (rg int j = 1; j <= i; ++j)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % p;
for (rg int i = 1; i <= c + 1; ++i) pow[i][0] = 1;
for (rg int i = 1; i <= c + 1; ++i)
for (rg int j = 1; j <= n * m; ++j)
pow[i][j] = 1ll * i * pow[i][j - 1] % p;
for (rg int i = 0; i <= n; ++i)
for (rg int j = 0; j <= m; ++j)
for (rg int k = 0; k <= c; ++k) {
x = (i + j + k) & 1 ? -1 : 1;
ans = (ans + 1ll * x * pow[c - k + 1][(n - i) * (m - j)] % p * C[n][i] % p * C[m][j] % p * C[c][k] % p) % p;
}
printf("%d
", (ans % p + p) % p);
return 0;
}