「JSOI2015」串分割
首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大。
那么对于最均匀的情况,也就是 (k | n) 的情况,我们肯定是通过枚举第一次分割的位置,然后每一段长度 (frac{n}{k}) 最后取最小的。
把这个思想运用到一般情况:如果分出来两段长短不一,那么长的只会比短的那个长度多 (1) ,再仔细想想,所有段只会有两种不同的长度 (lfloor frac{n}{k} floor, lceil frac{n}{k} ceil) ,那么我们就只需要判断什么情况下取长的,什么时候取短的就好了。
于是考虑二分最大的那个段的大小,然后再枚举第一次分割的位置,对于当前我们这段,如果分成长段会超过二分值,就换成短的,不然就按长的分,是否符合条件就判一下分出来的段的长度之和的大小,如果大于 (n) 说明当前的二分值大了,否则就是小了。
至于一段数的大小,我们可以直接将原数字环变成链然后倍长跑一遍后缀排序,比较的时候就直接拿 (rank_i) 来比就是了。
参考代码:
#include <algorithm>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 4e5 + 5;
int n, k, a[_], sa[_], rk[_];
inline void sufsort(int n) {
#define cmp(i, j, k) (y[i] == y[j] && y[i + k] == y[j + k])
static int x[_], y[_], cnt[_];
int m = 57;
for (rg int i = 1; i <= n; ++i) ++cnt[x[i] = a[i]];
for (rg int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
for (rg int i = n; i >= 1; --i) sa[cnt[x[i]]--] = i;
for (rg int k = 1; k <= n; k <<= 1) {
int p = 0;
for (rg int i = n - k + 1; i <= n; ++i) y[++p] = i;
for (rg int i = 1; i <= n; ++i) if (sa[i] > k) y[++p] = sa[i] - k;
for (rg int i = 1; i <= m; ++i) cnt[i] = 0;
for (rg int i = 1; i <= n; ++i) ++cnt[x[i]];
for (rg int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
for (rg int i = n; i >= 1; --i) sa[cnt[x[y[i]]]--] = y[i];
swap(x, y), x[sa[1]] = p = 1;
for (rg int i = 2; i <= n; ++i) x[sa[i]] = cmp(sa[i], sa[i - 1], k) ? p : ++p;
if (p == n) break ; else m = p;
}
for (rg int i = 1; i <= n; ++i) rk[sa[i]] = i;
}
inline bool check(int mid) {
int x = n / k + (n % k != 0);
for (rg int i = 1; i <= x; ++i)
for (rg int p = i, j = 1; j <= k; ++j) {
p += rk[p] <= mid ? x : x - 1;
if (p >= i + n) return 1;
}
return 0;
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(k);
for (rg int i = 1; i <= n; ++i) scanf("%1d", a + i), a[n + i] = a[i];
sufsort(n << 1);
int l = 1, r = n << 1;
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) r = mid; else l = mid + 1;
}
for (rg int i = 1; i <= n; ++i)
if (rk[i] == l) {
for (rg int j = 1; j <= n / k + (n % k != 0); ++j) putchar(a[i + j - 1] + '0'); break ;
}
return 0;
}