zoukankan      html  css  js  c++  java
  • 【AGC 005F】Many Easy Problems

    Description

    One day, Takahashi was given the following problem from Aoki:

    You are given a tree with N vertices and an integer K. The vertices are numbered 1 through N. The edges are represented by pairs of integers (ai,bi).

    For a set S of vertices in the tree, let f(S) be the minimum number of the vertices in a subtree of the given tree that contains all vertices in S.

    There are C(n,k) ways to choose K vertices from the trees. For each of them, let S be the set of the chosen vertices, and find the sum of f(S) over all C(n,k) ways.

    Since the answer may be extremely large, print it modulo 924844033(prime).

    Since it was too easy for him, he decided to solve this problem for all K=1,2...N.

    2≤N≤200000,1≤ai,bi≤N.The given graph is a tree.

    Input

    The input is given from Standard Input in the following format:
    N
    a1 b1
    a2 b2
    ...
    aN-1 bN-1

    Output

    Print N lines. The i-th line should contain the answer to the problem where K=i, modulo 924844033.
     

    题意:给定一棵 $n$ 个节点的树,选出 $k$ 个特殊点,假设点集为 $S$,令 $f(S)$ 为最小的包含这 $k$ 个节点的连通块,分别求出 $k=1...n$ 在所有情况下的 $f(S)$ 的和。

    分析:

    考虑暴力,一个点被统计在连通块内,即在以它为根时,选出来的 $k$ 个点都在它的同一个儿子的子树内。即节点 $x$ 被统计进答案的次数 $g(x)$ 为:

    $$g(x)=inom{n}{k}-sum _{(x,i)subseteq E}inom{sz_{i}}{k}$$

    令 $cnt_{x}$ 表示上述公式里有多少个 $sz_{i}=x$,那么可以得到:

    $$ans_{k}=sum _{i=1}^{n}cnt_{i}cdotinom{i}{k}$$

    整理可得:

    $$k!cdot ans_{k}=sum _{i=1}^{n}frac{cnt_{i}cdot i!}{(i-k)!}$$

    令 $a_{i}=cnt_{i}cdot i!$$b_{i}=(n-i)!$,则可得:

    $$k!cdot ans_{k}=sum _{i=1}^{n}a_{i}cdot b_{n-i+k}$$

    最终答案为 $ncdot inom{n}{k}-ans_{k}$ 

     

     1 #include<cstdio>
     2 #include<algorithm> 
     3 #include<cstring>
     4 #define LL long long
     5 using namespace std;
     6 const int N=2e5+5;
     7 const int M=524288+5;
     8 const int mod=924844033; 
     9 int n,nn,cnt,u,v,ans,first[N],fac[N],inv[N];
    10 int num[N],sz[N],a[M],b[M];
    11 struct edge{int to,next;}e[N*2];
    12 int read()
    13 {
    14     int x=0,f=1;char c=getchar();
    15     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    16     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    17     return x*f;
    18 }
    19 void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
    20 void dfs(int x,int fa)
    21 {
    22     sz[x]=1;
    23     for(int i=first[x];i;i=e[i].next)
    24     {
    25         int to=e[i].to;
    26         if(to==fa)continue;
    27         dfs(to,x);
    28         sz[x]+=sz[to];
    29     }
    30     if(fa!=-1)a[sz[x]]++,a[n-sz[x]]++;
    31 }
    32 int power(int a,int b)
    33 {
    34     int ans=1;
    35     while(b)
    36     {
    37         if(b&1)ans=1ll*ans*a%mod;
    38         a=1ll*a*a%mod;b>>=1;
    39     }
    40     return ans;
    41 }
    42 void ntt(int *a,int n,int f)
    43 {
    44     int k=0;while((1<<k)<n)k++;
    45     for(int i=0;i<n;i++)
    46     {
    47         int t=0;
    48         for(int j=0;j<k;j++)
    49             if(i&(1<<j))t|=(1<<(k-j-1));
    50         if(i<t)swap(a[i],a[t]);
    51     }
    52     for(int l=2;l<=n;l<<=1)
    53     {
    54         int m=l>>1,nw=power(5,(mod-1)/l);
    55         if(f==-1)nw=power(nw,mod-2);
    56         for(int *p=a;p!=a+n;p+=l)
    57         {
    58             int w=1;
    59             for(int i=0;i<m;i++)
    60             {
    61                 int t=1ll*p[m+i]*w%mod;
    62                 p[m+i]=(p[i]-t+mod)%mod;
    63                 p[i]=(p[i]+t)%mod;
    64                 w=1ll*w*nw%mod;
    65             }
    66         }
    67     }
    68     if(f==-1)
    69     {
    70         int inv=power(n,mod-2);
    71         for(int i=0;i<n;i++)a[i]=1ll*a[i]*inv%mod;
    72     }
    73 }
    74 int main()
    75 {
    76     n=read();
    77     for(int i=1;i<n;i++)
    78     {
    79         u=read();v=read();
    80         ins(u,v);ins(v,u);
    81     }
    82     dfs(1,-1);
    83     fac[0]=1;
    84     for(int i=1;i<=n;i++)fac[i]=1ll*fac[i-1]*i%mod;
    85     inv[n]=power(fac[n],mod-2);
    86     for(int i=n;i>=1;i--)inv[i-1]=1ll*inv[i]*i%mod;
    87     for(int i=1;i<=n;i++)a[i]=1ll*a[i]*fac[i]%mod;
    88     for(int i=0;i<=n;i++)b[n-i]=inv[i];
    89     nn=1;while(nn<n+n+1)nn<<=1;
    90     ntt(a,nn,1);ntt(b,nn,1);
    91     for(int i=0;i<nn;i++)a[i]=1ll*a[i]*b[i]%mod;
    92     ntt(a,nn,-1);
    93     for(int i=1;i<=n;i++)
    94     {
    95         ans=1ll*fac[n]*inv[i]%mod*inv[n-i]%mod*n%mod;
    96         printf("%lld
    ",(ans-1ll*a[n+i]*inv[i]%mod+mod)%mod);
    97     }
    98     return 0;
    99 }
    View Code
  • 相关阅读:
    利用.net Core 对程序集中的类 进行统一依赖注入
    接口中定义异步的方法
    在efcore 中创建类 通过实现IEntityTypeConfiguration<T>接口 实现实体类的伙伴类 实现FluentApi
    在vs2017 版本15.7.6中不支持2.1.0以上版本的net core sdk
    在.net core不同的版本中 webabi引用的包不同
    SQL语句中使用Group by
    DDD实战12 值对象不创建表,而是直接作为实体中的字段
    src与href的区别。
    cookies,sessionStorage 和 localStorage 的区别
    javascript阻止事件冒泡和浏览器的默认行为
  • 原文地址:https://www.cnblogs.com/zsnuo/p/8898265.html
Copyright © 2011-2022 走看看