zoukankan      html  css  js  c++  java
  • 集训第五周动态规划 C题 编辑距离

    Description

    Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:

    • Deletion: a letter in x is missing in y at a corresponding position.
    • Insertion: a letter in y is missing in x at a corresponding position.
    • Change: letters at corresponding positions are distinct

    Certainly, we would like to minimize the number of all possible operations.

    Illustration
    A G T A A G T * A G G C 
    | | | | | | |
    A G T * C * T G A C G C
    Deletion: * in the bottom line 
    Insertion: * in the top line 
    Change: when the letters at the top and bottom are distinct

    This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

    A  G  T  A  A  G  T  A  G  G  C 
    | | | | | | |
    A G T C T G * A C G C

    and 4 moves would be required (3 changes and 1 deletion).

    In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥m.

    Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

    Write a program that would minimize the number of possible operations to transform any string x into a string y.

    Input

    The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

    Output

    An integer representing the minimum number of possible operations to transform any string x into a string y.

    Sample Input

    10 AGTCTGACGC
    11 AGTAAGTAGGC

    Sample Output

    4

    经典的LIS变种,编辑距离
    很显然这道题使用一般的方法是做不出来的,因为这道题要求输出的操作数最少,每一步的方法都应该最优。
    所以DP
    状态表示:dp[i][j]表示两个字符串
    最优子结构:dp[i][j]表示从a[i]到b[j]完全匹配的最小操作数
    状态转移方程:1.dp[i][j]=dp[i-1][j-1] (a[i]=b[j]) //相等无需变化,因此操作数也不增加
    2.dp[i][j]=min{dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+1} (a[i]!=b[j]) //不相等还要考虑替换,插入操作

    3.dp[i][0]=i,dp[0][i]=i //这是初始化步骤,这符合规律,因为这种情况下只能执行删除操作,而这也是动态规划往后扩展的基石


    #include"iostream"
    #include"cstdio"
    using namespace std;
    
    const int maxn=1010;
    
    int m,n,len,ans;
    char a[maxn],b[maxn];
    int dp[1010][1010];
    
    void Work()
    {
        len=max(m,n);
        for(int i=0;i<=len;i++)
        {
            dp[i][0]=i;
            dp[0][i]=i;
        }
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+1;
                if(a[i]==b[j])
                dp[i][j]=dp[i-1][j-1];
                else
                dp[i][j]=min(dp[i][j],dp[i-1][j-1]+1);
            }
        }
        ans=dp[m][n];
    }
    
    void Print()
    {
        cout<<ans<<endl;
    }
    
    int main()
    {
        while(~scanf("%d %s",&m,a+1))
         {
             scanf("%d %s",&n,b+1);
             Work();
             Print();
         }
        return 0;
    }
    O(OO)O
  • 相关阅读:
    LoRa硬件调试-前导码
    LoRaWAN调试踩坑心得(二)
    LoRaWAN调试踩坑心得(一)
    LoRaWAN_stack移植笔记(七)_数据包的接收发送
    LoRaWAN协议(七)--完整数据流程
    Android Studio Error while executing: am start -n错误解决方案
    Spring系列(八)
    并发工具类简介
    CAS
    多线程基础(一)线程创建
  • 原文地址:https://www.cnblogs.com/zsyacm666666/p/4723608.html
Copyright © 2011-2022 走看看