zoukankan      html  css  js  c++  java
  • C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))

    C. Kyoya and Colored Balls

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

    Input

    The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

    Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).

    The total number of balls doesn't exceed 1000.

    Output

    A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

    Sample test(s)
    input
    3
    2
    2
    1
    
    output
    3
    
    input
    4
    1
    2
    3
    4
    
    output
    1680
    
    Note

    In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

    1 2 1 2 3
    1 1 2 2 3
    2 1 1 2 3
    
    题意:n种不同颜色的球。有k[n]个,要求每种颜色的球的最后一个的相对初始状态(球的种类)的位置不变;问有多少种组合
    思路:定最后一个球,其它的球(同样的颜色)在前面任选,之后再定最后另外一种颜色的球<放在剩下空中离最后一个位置近期的地方>,然后剩下的任选。。

    。以此类推。

    题目链接:http://codeforces.com/contest/554/problem/C
    转载请注明出处:寻找&星空の孩子
    用了个费马小定理优化了下。也不可不优化。(a=1 mod (p-1),gcd(a,p)=1)
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    #define LL long long
    const LL mod =  1000000007;
    LL n;
    LL a[1005];
    LL fac[1000005];
    
    
    LL ppow(LL a,LL b)
    {
        LL c=1;
        while(b)
        {
            if(b&1) c=c*a%mod;
            b>>=1;
            a=a*a%mod;
        }
        return c;
    }
    
    
    LL work(LL m,LL i)
    {
        return ((fac[m]%mod)*(ppow((fac[i]*fac[m-i])%mod,mod-2)%mod))%mod;
    }
    
    int main()
    {
        LL i,j,k;
        fac[0] = 1;
        for(i = 1; i<1000005; i++)
            fac[i]=(fac[i-1]*i)%mod;
        LL ans = 1,sum = 0;
        scanf("%I64d",&n);
        for(i = 1; i<=n; i++)
        {
            scanf("%I64d",&a[i]);
            sum+=a[i];
        }
        for(i = n; i>=1; i--)
        {
            ans*=work(sum-1,a[i]-1);
            ans%=mod;
            sum-=a[i];
        }
        printf("%I64d
    ",ans);
    
        return 0;
    }



  • 相关阅读:
    LeetCode_143. 重排链表
    LeetCode_844. 比较含退格的字符串
    LeetCode116. 填充每个节点的下一个右侧节点指针
    1002. 查找常用字符
    贝叶斯定理(Bayes' theorem)的理解笔记
    汉明码
    超级好用 音乐可视化软件-Specinker
    安卓安装aidlearning
    windows下gcc的安装和使用
    ubuntu桌面配置
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6728128.html
Copyright © 2011-2022 走看看