zoukankan      html  css  js  c++  java
  • POJ 2533 Longest Ordered Subsequence

    链接:http://poj.org/problem?

    id=2533

    Longest Ordered Subsequence

    Time Limit: 2000MS Memory Limit: 65536K
    Total Submissions: 38875 Accepted: 17066

    Description


    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input


    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output


    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7

    1 7 3 5 9 4 8


    Sample Output

    4

    Source

    Northeastern Europe 2002, Far-Eastern Subregion

    大意——给一队排列整齐的数列ai,找到数列ai中最长上升子序列的长度。

    思路——这是一道很典型的LIS问题。设dp[i]表示以第i个数为后缀的单调序列的最大长度,则dp[0]=1,dp[i+1]= max{1,dp[j]+1|j=0,1,...,i&&a[i+1]>a[j]},max{dp[i]|i=0,...,n-1}即为结果。

    复杂度分析——时间复杂度:O(n^2),空间复杂度:O(n)

    附上AC代码:


    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cmath>
    #include <iomanip>
    #include <ctime>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <vector>
    #include <set>
    #include <map>
    using namespace std;
    typedef unsigned int UI;
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef long double LD;
    const double pi = acos(-1.0);
    const double e = exp(1.0);
    const int maxn = 1005;
    int num[maxn];
    int dp[maxn];
    
    int main()
    {
    	ios::sync_with_stdio(false);
    	int n;
    	while (scanf("%d", &n) != EOF)
    	{
    		for(int i=0; i<n; i++)
    			scanf("%d", &num[i]);
    		dp[0] = 1;
    		for (int i=1; i<n; i++)
    		{
    			dp[i] = 1;
    			for (int j=0; j<i; j++)
    				if (num[j] < num[i])
    					dp[i] = max(dp[i], dp[j]+1);
    		}
    		int ans = 0;
    		for (int i=0; i<n; i++)
    			ans = max(ans, dp[i]);
    		printf("%d
    ", ans);
    	}
    	return 0;
    }
    


  • 相关阅读:
    那些陌生的C++关键字
    从实现装饰者模式中思考C++指针和引用的选择
    单例模式(Singleton)
    命令模式(Command)
    抽象工厂模式(Abstract Factory)
    《Effective C++》读书摘要
    桥接模式(Bridge)
    适配器模式(Adapter)
    设计模式学习心得
    黑客常用WinAPI函数整理
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6951084.html
Copyright © 2011-2022 走看看