zoukankan      html  css  js  c++  java
  • crypt.c —— libcrypt


    http://www.jbox.dk/sanos/source/lib/crypt.c.html


    //
    // crypt.c
    //
    // DES based implementation of crypt()
    //
    // Copyright (C) 2005 Michael Ringgaard. All rights reserved.
    // Copyright (C) 1999 America Online, Inc. All Rights Reserved.
    //
    // The contents of this file are subject to the AOLserver Public License
    // Version 1.1 (the "License"); you may not use this file except in
    // compliance with the License. You may obtain a copy of the License at
    // http://aolserver.com/.
    //
    // Software distributed under the License is distributed on an "AS IS"
    // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
    // the License for the specific language governing rights and limitations
    // under the License.
    //
    // The Original Code is AOLserver Code and related documentation
    // distributed by AOL.
    // 
    // The Initial Developer of the Original Code is America Online, Inc. 
    // Portions created by AOL are Copyright (C) 1999 America Online,Inc. 
    // All Rights Reserved.
    //
    
    #include <sys/types.h>
    
    //
    // This program implements the Proposed Federal Information Processing Data
    // Encryption Standard. See Federal Register, March 17, 1975 (40FR12134)
    //
    
    //
    // Initial permutation
    //
    
    static const char IP[] = {
      58, 50, 42, 34, 26, 18, 10, 2,
      60, 52, 44, 36, 28, 20, 12, 4,
      62, 54, 46, 38, 30, 22, 14, 6,
      64, 56, 48, 40, 32, 24, 16, 8,
      57, 49, 41, 33, 25, 17, 9, 1,
      59, 51, 43, 35, 27, 19, 11, 3,
      61, 53, 45, 37, 29, 21, 13, 5,
      63, 55, 47, 39, 31, 23, 15, 7,
    };
    
    //
    // Final permutation, FP = IP^(-1)
    //
    
    static const char FP[] = {
      40, 8, 48, 16, 56, 24, 64, 32,
      39, 7, 47, 15, 55, 23, 63, 31,
      38, 6, 46, 14, 54, 22, 62, 30,
      37, 5, 45, 13, 53, 21, 61, 29,
      36, 4, 44, 12, 52, 20, 60, 28,
      35, 3, 43, 11, 51, 19, 59, 27,
      34, 2, 42, 10, 50, 18, 58, 26,
      33, 1, 41, 9, 49, 17, 57, 25,
    };
    
    //
    // Permuted-choice 1 from the key bits to yield C and D. Note that bits
    // 8,16... are left out: They are intended for a parity check.
    //
    
    static const char PC1_C[] = {
      57, 49, 41, 33, 25, 17, 9,
      1, 58, 50, 42, 34, 26, 18,
      10, 2, 59, 51, 43, 35, 27,
      19, 11, 3, 60, 52, 44, 36,
    };
    
    static const char PC1_D[] = {
      63, 55, 47, 39, 31, 23, 15,
      7, 62, 54, 46, 38, 30, 22,
      14, 6, 61, 53, 45, 37, 29,
      21, 13, 5, 28, 20, 12, 4,
    };
    
    //
    // Sequence of shifts used for the key schedule.
    //
    
    static const char shifts[] = {
      1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    };
    
    //
    // Permuted-choice 2, to pick out the bits from the CD array that generate
    // the key schedule.
    //
    
    static const char PC2_C[] = {
      14, 17, 11, 24, 1, 5,
      3, 28, 15, 6, 21, 10,
      23, 19, 12, 4, 26, 8,
      16, 7, 27, 20, 13, 2,
    };
    
    static const char PC2_D[] = {
      41, 52, 31, 37, 47, 55,
      30, 40, 51, 45, 33, 48,
      44, 49, 39, 56, 34, 53,
      46, 42, 50, 36, 29, 32,
    };
    
    //
    // The following structure maitains the key schedule.
    //
    
    struct sched {
      // The C and D arrays used to calculate the key schedule.
      char C[28];
      char D[28];
    
      // The key schedule. Generated from the key.
      char KS[16][48];
    
      // The E bit-selection table.
      char E[48];
    };
    
    static const char e[] = {
      32, 1, 2, 3, 4, 5,
      4, 5, 6, 7, 8, 9,
      8, 9, 10, 11, 12, 13,
      12, 13, 14, 15, 16, 17,
      16, 17, 18, 19, 20, 21,
      20, 21, 22, 23, 24, 25,
      24, 25, 26, 27, 28, 29,
      28, 29, 30, 31, 32, 1,
    };
    
    //
    // Set up the key schedule from the key.
    //
    
    static void setkey_r(struct sched *sp, const char *key) {
      int i, j, k;
      int t;
    
      // First, generate C and D by permuting the key.  The low order bit of
      // each 8-bit char is not used, so C and D are only 28 bits apiece.
      for (i = 0; i < 28; i++) {
        sp->C[i] = key[PC1_C[i] - 1];
        sp->D[i] = key[PC1_D[i] - 1];
      }
    
      // To generate Ki, rotate C and D according to schedule and pick up a
      // permutation using PC2.
      for (i = 0; i < 16; i++) {
        // Rotate
        for (k = 0; k < shifts[i]; k++) {
          t = sp->C[0];
          for (j = 0; j < 28 - 1; j++) sp->C[j] = sp->C[j + 1];
          sp->C[27] = t;
          t = sp->D[0];
          for (j = 0; j < 28 - 1; j++) sp->D[j] = sp->D[j + 1];
          sp->D[27] = t;
        }
    
        // Get Ki (note C and D are concatenated)
        for (j = 0; j < 24; j++) {
          sp->KS[i][j] = sp->C[PC2_C[j] - 1];
          sp->KS[i][j + 24] = sp->D[PC2_D[j] - 28 - 1];
        }
      }
    
      for (i = 0; i < 48; i++) sp->E[i] = e[i];
    }
    
    //
    // The 8 selection functions. For some reason, they give a 0-origin index,
    // unlike everything else.
    //
    
    static const char S[8][64] = {
      { 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
         0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
         4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
        15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    
      { 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
         3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
         0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
        13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    
      { 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
        13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
        13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
         1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    
      {  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
        13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
        10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
         3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    
      {  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
        14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
         4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
        11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    
      { 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
        10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
         9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
         4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    
      {  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
        13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
         1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
         6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    
      { 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
         1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
         7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
         2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 },
    };
    
    //
    // P is a permutation on the selected combination of the current L and key
    //
    
    static const char P[] = {
      16, 7, 20, 21,
      29, 12, 28, 17,
      1, 15, 23, 26,
      5, 18, 31, 10,
      2, 8, 24, 14,
      32, 27, 3, 9,
      19, 13, 30, 6,
      22, 11, 4, 25,
    };
    
    //
    // Encrypt a block
    //
    
    static void encrypt_r(struct sched *sp, char *block, int edflag) {
      // The current block, divided into 2 halves.
      char L[64], *R = L + 32;
      char tempL[32];
      char f[32];
    
      // The combination of the key and the input, before selection
      char preS[48];
    
      int i, ii;
      int t, j, k;
    
      // First, permute the bits in the input
      for (j = 0; j < 64; j++) L[j] = block[IP[j] - 1];
    
      // Perform an encryption operation 16 times
      for (ii = 0; ii < 16; ii++) {
        // Set direction
        if (edflag) {
          i = 15 - ii;
        } else {
          i = ii;
        }
    
        // Save the R array, which will be the new L
        for (j = 0; j < 32; j++) tempL[j] = R[j];
    
        // Expand R to 48 bits using the E selector; exclusive-or with the current key bits
        for (j = 0; j < 48; j++) preS[j] = R[sp->E[j] - 1] ^ sp->KS[i][j];
    
        // The pre-select bits are now considered in 8 groups of 6 bits each.
        // The 8 selection functions map these 6-bit quantities into 4-bit
        // quantities and the results permuted to make an f(R, K). The
        // indexing into the selection functions is peculiar; it could be
        // simplified by rewriting the tables.
    
        for (j = 0; j < 8; j++) {
          t = 6 * j;
          k = S[j][(preS[t + 0] << 5) +
              (preS[t + 1] << 3) +
              (preS[t + 2] << 2) +
              (preS[t + 3] << 1) +
              (preS[t + 4] << 0) +
              (preS[t + 5] << 4)];
          t = 4 * j;
          f[t + 0] = (k >> 3) & 01;
          f[t + 1] = (k >> 2) & 01;
          f[t + 2] = (k >> 1) & 01;
          f[t + 3] = (k >> 0) & 01;
        }
    
        // The new R is L ^ f(R, K). The f here has to be permuted first, though.
        for (j = 0; j < 32; j++) R[j] = L[j] ^ f[P[j] - 1];
    
        // Finally, the new L (the original R) is copied back.
        for (j = 0; j < 32; j++) L[j] = tempL[j];
      }
    
      // The output L and R are reversed.
      for (j = 0; j < 32; j++) {
        t = L[j];
        L[j] = R[j];
        R[j] = t;
      }
    
      // The final output gets the inverse permutation of the very original.
      for (j = 0; j < 64; j++) block[j] = L[FP[j] - 1];
    }
    
    char *crypt_r(const char *key, const char *salt, char *buf) {
      int i, j, c;
      int temp;
      char block[66];
      struct sched s;
    
      for (i = 0; i < 66; i++) block[i] = 0;
      for (i = 0; (c = *key) && i < 64; key++) {
        for (j = 0; j < 7; j++, i++) block[i] = (c >> (6 - j)) & 01;
        i++;
      }
    
      setkey_r(&s, block);
    
      for (i = 0; i < 66; i++) block[i] = 0;
    
      for (i = 0; i < 2; i++) {
        c = *salt++;
        buf[i] = c;
        if (c > 'Z') c -= 6;
        if (c > '9') c -= 7;
        c -= '.';
        for (j = 0; j < 6; j++) {
          if ((c >> j) & 01) {
            temp = s.E[6 * i + j];
            s.E[6 * i + j] = s.E[6 * i + j + 24];
            s.E[6 * i + j + 24] = temp;
          }
        }
      }
    
      for (i = 0; i < 25; i++) encrypt_r(&s, block, 0);
    
      for (i = 0; i < 11; i++) {
        c = 0;
        for (j = 0; j < 6; j++) {
          c <<= 1;
          c |= block[6 * i + j];
        }
        c += '.';
        if (c > '9') c += 7;
        if (c > 'Z') c += 6;
        buf[i + 2] = c;
      }
      buf[i + 2] = 0;
      if (buf[1] == 0) buf[1] = buf[0];
    
      return buf;
    }


  • 相关阅读:
    解析form表单数据
    linux下开启https
    Jquery UI的日历控件datepicker限制日期(转)
    [MicroPython]TPYBoardv102超全DIY案例一览
    [MicroPython]TurnipBit开发板DIY自动浇水系统
    [MicroPython]TurniBit开发板旋转按钮控制脱机摆动
    [MicroPython]TurniBit开发板DIY自动窗帘模拟系统
    [Micropython]TPYBoard v102 DIY照相机
    python的各种推导式(列表推导式、字典推导式、集合推导式)
    管理 python logging 日志使用
  • 原文地址:https://www.cnblogs.com/ztguang/p/12646268.html
Copyright © 2011-2022 走看看