湖南省第十二届大学生计算机程序设计竞赛$H$题
规律,递推。
这种问题一看就有规律。可以按位统计对答案的贡献。即第$1$位对答案作出了多少贡献,第$2$位对答案作出了多少贡献.....累加和就是答案。
先写一个暴力的程序来找找规律:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<iostream> using namespace std; typedef long long LL; const double pi=acos(-1.0),eps=1e-6; void File() { freopen("D:\in.txt","r",stdin); freopen("D:\out.txt","w",stdout); } template <class T> inline void read(T &x) { char c = getchar(); x = 0; while(!isdigit(c)) c = getchar(); while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); } } const int maxn=1010; struct X { int p; }s[maxn]; int n; int f[maxn][maxn]; int main() { while(~scanf("%d",&n)) { memset(f,0,sizeof f); for(int i=1;i<=n;i++) s[i].p=i; for(int i=1;i<=n;i++) { for(int j=i;j<=n;j++) { for(int k=i;k<=(i+j)/2;k++) swap(s[k],s[j-(k-i)]); for(int k=1;k<=n;k++) f[s[k].p][k]++; for(int k=i;k<=(i+j)/2;k++) swap(s[k],s[j-(k-i)]); } } for(int i=1;i<=n;i++) { int sum=0; for(int j=1;j<=n;j++) { // sum=sum+(int)pow(10.0,j-1)*f[i][j]; printf("%3d ",f[i][j]); } printf(" "); // printf("%d ",sum); } printf(" "); } return 0; }
上面的代码中,$f[i][j]$表示$i$这一位,所有交换中,在$j$位出现了几次;答案就是$sumlimits_{i = 1}^n {left( {s[i]×left( {sumlimits_{j = 1}^n {f[i][j]×{{10}^{j - 1}}} } ight)} ight)} $。
输出来看一下$n=10$和$n=11$时候的情况,看看$f[i][j]$有没有什么规律:
通过观察可以发现:
$[1].$每一行的和都是一样的,$n=x$时,每一行的和$cnt[x]$都是一样的,并且$cnt[x]=x+cnt[x-1]$。
$[2].$第$i$行的贡献${sumlimits_{j = 1}^n {f[i][j]×{{10}^{j - 1}}} }$可以由第$i-1$行的贡献${sumlimits_{j = 1}^n {f[i-1][j]×{{10}^{j - 1}}} }$递推而来。
也就是说,我们可以$O(n)$效率得到每一位的贡献,然后乘上输入的那个权值就是答案了。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<iostream> using namespace std; typedef long long LL; const double pi = acos(-1.0), eps = 1e-8; void File() { freopen("D:\in.txt", "r", stdin); freopen("D:\out.txt", "w", stdout); } template <class T> inline void read(T &x) { char c = getchar(); x = 0; while (!isdigit(c)) c = getchar(); while (isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); } } const LL mod = 1e9 + 7; const int maxn = 100010; LL a[maxn], cnt[maxn], POW[maxn], sPOW[maxn], num[maxn]; char s[maxn]; int n; int main() { cnt[1] = 1; for (int i = 2; i <= 100000; i++) cnt[i] = (cnt[i - 1] + i) % mod; POW[0] = 1; sPOW[0] = 1; for (int i = 1; i <= 100000; i++) { POW[i] = (LL)10 * POW[i - 1] % mod; sPOW[i] = (sPOW[i - 1] + POW[i]) % mod; } while (~scanf("%d%s", &n, s)) { memset(num, 0, sizeof num); memset(a, 0, sizeof a); num[0] = (cnt[n] - (n - 1) + mod) % mod; a[0] = (num[0]*POW[0] % mod + (sPOW[n - 1] - sPOW[0] + mod) % mod) % mod; int L = 1, R = n - 1; for (int i = 1; i < n / 2; i++) { L++, R--; num[i] = (num[i - 1] - (R - L + 1) + mod) % mod; a[i] = (a[i - 1] + sPOW[R] - sPOW[L - 1] + mod) % mod; a[i] = (a[i] + ((num[i] - i + mod) % mod)*POW[i] % mod) % mod; a[i] = (a[i] - (((num[i - 1] - i + mod) % mod)*POW[i - 1] % mod) + mod) % mod; } num[n - 1] = num[0]; a[n - 1] = (num[n - 1] * POW[n - 1] % mod + sPOW[n - 2]) % mod; L = 0, R = n - 2; LL d = 1; for (int i = n - 2; i >= (n ) / 2; i--) { L++, R--; num[i]= (num[i + 1] - (R - L + 1) + mod) % mod; a[i]= (a[i + 1] + sPOW[R] - sPOW[L - 1] + mod) % mod; a[i] = (a[i] + ((num[i] - d + mod) % mod)*POW[i] % mod) % mod; a[i] = (a[i] - (((num[i + 1] - d + mod) % mod)*POW[i + 1] % mod) + mod) % mod; d++; } LL ans = 0; for (int i = 0; s[i]; i++) ans = (ans + (LL)(s[i] - '0')*a[n-i-1] % mod) % mod; cout << ans << endl; } return 0; }