矩阵快速幂,欧拉定理。
$g(n)$递推式:$g(n)=5g(n-1)+5g(n-2)-g(n-3)$,可以构造矩阵快速求递$n$项,指数很大,可以利用欧拉定理降幂。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<iostream> using namespace std; typedef long long LL; const double pi=acos(-1.0),eps=1e-6; void File() { freopen("D:\in.txt","r",stdin); freopen("D:\out.txt","w",stdout); } template <class T> inline void read(T &x) { char c=getchar(); x=0; while(!isdigit(c)) c=getchar(); while(isdigit(c)) {x=x*10+c-'0'; c=getchar();} } LL MOD; struct Matrix { long long A[4][4]; int R, C; Matrix operator*(Matrix b); }; Matrix X, Y, Z; Matrix Matrix::operator*(Matrix b) { Matrix c; memset(c.A, 0, sizeof(c.A)); int i, j, k; for (i = 1; i <= R; i++) for (j = 1; j <= b.C; j++) for (k = 1; k <= C; k++) c.A[i][j] = (c.A[i][j] + (A[i][k] * b.A[k][j]) % MOD) % MOD; c.R = R; c.C = b.C; return c; } void init() { memset(X.A, 0, sizeof X.A); memset(Y.A, 0, sizeof Y.A); memset(Z.A, 0, sizeof Z.A); Y.R = 3; Y.C = 3; for (int i = 1; i <= 3; i++) Y.A[i][i] = 1; X.R = 3; X.C = 3; X.A[1][3]=-1; X.A[2][1]=1; X.A[2][3]=5; X.A[3][2]=1; X.A[3][3]=5; Z.R = 1; Z.C = 3; Z.A[1][1]=0; Z.A[1][2]=1; Z.A[1][3]=5; } LL work(LL tt) { if(tt==0) return 0; if(tt==1) return 1; if(tt==2) return 5; tt=tt-2; init(); while (tt) { if (tt % 2 == 1) Y = Y*X; tt = tt >> 1; X = X*X; } Z = Z*Y; return Z.A[1][3]; } int T; LL n,x,y,s; LL phi(LL x) { LL res=x,a=x; for(int i=2;i*i<=a;i++) { if(a%i==0) { res=res/i*(i-1); while(a%i==0) a/=i; } } if(a>1) res=res/a*(a-1); return res; } LL pow(LL a,LL b,LL mod) { LL c=1; while(b!=0) { if(b%2==1) c=(c*a)%mod,b--; else a=(a*a)%mod,b=b/2; } return c; } int main() { scanf("%d",&T); while(T--) { scanf("%lld%lld%lld%lld",&n,&y,&x,&s); MOD=phi(s+1); LL gn=work(n*y)+MOD; LL ans=pow(x,gn,s+1); printf("%lld ",ans); } return 0; }