zoukankan      html  css  js  c++  java
  • 湖南大学ACM程序设计新生杯大赛(同步赛)H

    题目描述

    Yuanyuan Long is a dragon like this picture?

                                       
    I don’t know, maybe you can ask him. But I’m sure Yuanyuan Long likes ballons, he has a lot of ballons.          

    One day, he gets n white ballons and k kinds of pigment, and he thought a problem:

    1.      Number these ballons b1, b2,  … , bi, …,  to bn.

    2.      Link these ballons to a circle in order, and color these ballons.

    3.      He need to make sure that any neighbor ballons have different colors.

    He wants to know how many solutions to solve this problem. Can you get the answer to him? The answer maybe very large, get the answer MOD 100000007.

    For Example: with 3 ballons and 3 kinds of pigment

    Your answer is 3*2*1 MOD 100000007 = 6. 
    The answer maybe large, you can use integer type long long.

    输入描述:

    The first line is the cases T. ( T <=
    100)
    For next T lines, each line contains n and
    k. (2<= n <= 10000, 2<= k
    <=100)

    输出描述:

    For each test case, output the answer on
    each line.
    示例1

    输入

    3
    3 3
    4 2
    5 3

    输出

    6
    2
    30

    题解

    $dp$。

    $dp[i][j]$表示在第$1$个人涂第一种颜色,涂完$i$个人,且第$i$个人涂第$j$种颜色的方案数。

    $sum = dp[n][2]+...+dp[n][k]$,答案就是$sum*k$。

    有很多优化可以搞,什么优化都没做就过了......

    #include<cstdio>
    using namespace std;
     
    long long mod = 100000007LL;
    long long dp[10010][110];
     
    int main() {
      int T, n, k;
      scanf("%d", &T);
      while(T --) {
        scanf("%d%d", &n, &k);
        for(int i = 1; i <= n; i ++) {
          for(int j = 1; j <= k; j ++) {
            dp[i][j] = 0;
          }
        }
        dp[1][1] = 1;
        for(int i = 2; i <= n; i ++) {
          long long sum = 0;
          for(int j = 1; j <= k; j ++) {
            sum = (sum + dp[i - 1][j]) % mod;
          }
          for(int j = 1; j <= k; j ++) {
            dp[i][j] = (sum - dp[i - 1][j] + mod) % mod;
          }
        }
        long long sum = 0;
        for(int j = 2; j <= k; j ++) {
          sum = (sum + dp[n][j]) % mod;
        }
        sum = sum * k % mod;
        printf("%lld
    ", sum);
      }
      return 0;
    }
    

      

  • 相关阅读:
    轻量级微服务架构【读书笔记3】
    轻量级微服务架构【读书笔记2】
    轻量级微服务架构【读书笔记1】
    mvn package 和 mvn install
    SpringBoot 使用MultipartFile上传文件相关问题解决方案
    Docker学习笔记【三】安装Redis
    RESTful 最佳实战
    HTTP Status Codes 查询表
    扎实基础总述
    文本挖掘2相似度计算
  • 原文地址:https://www.cnblogs.com/zufezzt/p/8099017.html
Copyright © 2011-2022 走看看