zoukankan      html  css  js  c++  java
  • 湖南大学ACM程序设计新生杯大赛(同步赛)H

    题目描述

    Yuanyuan Long is a dragon like this picture?

                                       
    I don’t know, maybe you can ask him. But I’m sure Yuanyuan Long likes ballons, he has a lot of ballons.          

    One day, he gets n white ballons and k kinds of pigment, and he thought a problem:

    1.      Number these ballons b1, b2,  … , bi, …,  to bn.

    2.      Link these ballons to a circle in order, and color these ballons.

    3.      He need to make sure that any neighbor ballons have different colors.

    He wants to know how many solutions to solve this problem. Can you get the answer to him? The answer maybe very large, get the answer MOD 100000007.

    For Example: with 3 ballons and 3 kinds of pigment

    Your answer is 3*2*1 MOD 100000007 = 6. 
    The answer maybe large, you can use integer type long long.

    输入描述:

    The first line is the cases T. ( T <=
    100)
    For next T lines, each line contains n and
    k. (2<= n <= 10000, 2<= k
    <=100)

    输出描述:

    For each test case, output the answer on
    each line.
    示例1

    输入

    3
    3 3
    4 2
    5 3

    输出

    6
    2
    30

    题解

    $dp$。

    $dp[i][j]$表示在第$1$个人涂第一种颜色,涂完$i$个人,且第$i$个人涂第$j$种颜色的方案数。

    $sum = dp[n][2]+...+dp[n][k]$,答案就是$sum*k$。

    有很多优化可以搞,什么优化都没做就过了......

    #include<cstdio>
    using namespace std;
     
    long long mod = 100000007LL;
    long long dp[10010][110];
     
    int main() {
      int T, n, k;
      scanf("%d", &T);
      while(T --) {
        scanf("%d%d", &n, &k);
        for(int i = 1; i <= n; i ++) {
          for(int j = 1; j <= k; j ++) {
            dp[i][j] = 0;
          }
        }
        dp[1][1] = 1;
        for(int i = 2; i <= n; i ++) {
          long long sum = 0;
          for(int j = 1; j <= k; j ++) {
            sum = (sum + dp[i - 1][j]) % mod;
          }
          for(int j = 1; j <= k; j ++) {
            dp[i][j] = (sum - dp[i - 1][j] + mod) % mod;
          }
        }
        long long sum = 0;
        for(int j = 2; j <= k; j ++) {
          sum = (sum + dp[n][j]) % mod;
        }
        sum = sum * k % mod;
        printf("%lld
    ", sum);
      }
      return 0;
    }
    

      

  • 相关阅读:
    DataImport(译)
    Spring JDBC最佳实践(1)
    在Spring中快速使用EHCache注解
    VS 2010 WPF核心是哪些功能特性 ?
    [你必须知道的.NET]第十五回:继承本质论
    C#设置本地网络(DNS、网关、子网掩码、IP)
    [你必须知道的.NET]第十六回:深入浅出关键字using全接触
    逆变与协变
    C# 判断网站是否能访问或者断链
    接口与抽象类
  • 原文地址:https://www.cnblogs.com/zufezzt/p/8099017.html
Copyright © 2011-2022 走看看