zoukankan      html  css  js  c++  java
  • POJ2253(dijkstra堆优化)

    https://vjudge.net/problem/POJ-2253

    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping.
    Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
    To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

    You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

    Input

    The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

    Output

    For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

    Sample Input

    2
    0 0
    3 4
    
    3
    17 4
    19 4
    18 5
    
    0
    

    Sample Output

    Scenario #1
    Frog Distance = 5.000
    
    Scenario #2
    Frog Distance = 1.414
    
     1 //#include<bits/stdc++.h>
     2 #include<iostream>
     3 #include<stdio.h>
     4 #include<string.h>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<vector>
     8 #include<queue>
     9 #define maxn 210
    10 #define ms(x,n) memset(x,n,sizeof x);
    11 const int inf=0x3f3f3f3f;
    12 using namespace std;
    13 int n;
    14 double d[maxn],cost[maxn][maxn];
    15 bool vis[maxn];
    16 struct node
    17 {
    18     int x,y;
    19     node(int xx,int yy){x=xx,y=yy;}
    20 };
    21 vector<node> v;
    22 double dis(double x1,double y1,double x2,double y2)
    23 {
    24     return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    25 }
    26 typedef pair<double,int> p;
    27 
    28 void dij(int s)
    29 {
    30     fill_n(d,maxn,inf);
    31     ms(vis,0);
    32     priority_queue<p,vector<p>,greater<p> >q;
    33     q.push(p(d[s]=0,s));
    34     while(!q.empty())
    35     {
    36         p cur=q.top();
    37         q.pop();
    38         int i=cur.second;
    39         if(vis[i])continue;
    40         vis[i]=1;
    41         for(int j=0;j<n;j++)
    42         {
    43             if(max(d[i],cost[i][j])<d[j])
    44             {d[j]=max(d[i],cost[i][j]);
    45              q.push(p(d[j],j));
    46             }
    47         }
    48     }
    49 }
    50 int main()
    51 {
    52     int t=0;
    53     while(~scanf("%d",&n),n)
    54     {
    55         int x,y;
    56         v.clear();
    57         for(int i=1;i<=n;i++)
    58         {
    59             scanf("%d%d",&x,&y);
    60             v.push_back(node(x,y));
    61         }
    62         fill_n(cost[0],maxn*maxn,inf);
    63         for(int i=0;i<n;i++)
    64             for(int j=i+1;j<n;j++)
    65             cost[i][j]=cost[j][i]=dis(v[i].x,v[i].y,v[j].x,v[j].y);
    66         dij(0);
    67         if(t)cout<<endl;
    68        // printf("Scenario #%d
    Frog Distance = %.3f
    ",t++,d[1]);
    69        printf("Scenario #%d
    Frog Distance = %.3f
    ", ++t, d[1]);
    70 
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    JS给数字加千位分隔符
    前端防抖与节流实现与应用
    JS实现单向链表、双向链表、循环链表
    单点登录
    AMD、CMD规范
    JS实现全排列
    event loop、进程和线程、任务队列
    BOM属性对象方法
    JS的闭包、高阶函数、柯里化
    for...in、for...of、forEach()有什么区别
  • 原文地址:https://www.cnblogs.com/zuiaimiusi/p/10777147.html
Copyright © 2011-2022 走看看