zoukankan      html  css  js  c++  java
  • BZOJ4358: permu(带撤销并查集 不删除莫队)

    题意

    题目链接

    Sol

    感觉自己已经老的爬不动了。。

    想了一会儿,大概用个不删除莫队+带撤销并查集就能搞了吧,(n sqrt{n} logn)应该卡的过去

    不过不删除莫队咋写来着?。。。。跑去学。。

    带撤销并查集咋写来着?。。。。跑去学。。。

    发现自己的带撤销并查集是错的,,自己yy着调了1h终于过了大数据。。

    #include<bits/stdc++.h> 
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    //#define int long long 
    #define LL long long 
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    #define pb(x) push_back(x)
    using namespace std;
    const int mod = 1e9 + 7;
    const int MAXN = 1e6 + 10;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, a[MAXN], belong[MAXN], block, ans[MAXN], cnt, fa[MAXN];
    struct Q {
        int l, r, id;
        bool operator < (const Q &rhs) const{
            return r < rhs.r;
        }
    };
    vector<Q> q[MAXN];
    int SolveBlock(int x, int y) {
        if(x == y) return 1;
        vector<int> v;
        for(int i = x; i <= y; i++) v.pb(a[i]);
        sort(v.begin(), v.end());
        int res = 1, now = 1; 
        for(int i = 1; i < v.size(); i++) 
    		now = (v[i] == v[i - 1] + 1 ? now + 1 : 1), chmax(res, now);
        return res;
    }
    int inder[MAXN], Top, ha[MAXN], cur, mx;
    struct Node {
        int x, deg;
    }S[MAXN];
    int find(int x) {
    	return fa[x] == x ? x : find(fa[x]);
    }
    void unionn(int x, int y) {
        x = find(x); y = find(y);
        if(x == y) return;
        if(inder[x] < inder[y]) swap(x, y);
    	chmax(mx, inder[x] + inder[y]);
        fa[y] = x;
        S[++Top] = (Node) {y, inder[y]};
        S[++Top] = (Node) {x, inder[x]};//tag
        inder[x] += inder[y];
    }
    void Delet(int cur) {
        while(Top > cur) {
            Node pre = S[Top--];
            fa[pre.x] = pre.x;
            inder[pre.x] = pre.deg;
        }
    }
    void Add(int x) {
        ha[x] = 1;
        if(ha[x - 1]) unionn(x - 1, x);
        if(ha[x + 1]) unionn(x, x + 1);
    }
    void solve(int i, vector<Q> &v) {
    	memset(ha, 0, sizeof(ha));
    	Top = 0; int R = min(N, i * block) + 1;
        int ql = R, qr = ql - 1;//tag
        cur = 0, mx = 1;
        for(int i = 1; i <= N; i++) fa[i] = i, inder[i] = 1;
        for(int i = 0; i < v.size(); i++) {
        	Q x = v[i];
            while(qr < x.r) Add(a[++qr]);
            cur = mx; int pre = Top;
            while(ql > x.l) Add(a[--ql]);
            ans[x.id] = mx;
            mx = cur;
            Delet(pre);
            while(ql < R) ha[a[ql++]] = 0;
        }
    }
    signed main() {
        int mx = 0;
        N = read(); M = read(); block = sqrt(N); 
        for(int i = 1; i <= N; i++) a[i] = read(), belong[i] = (i - 1) / block + 1, chmax(mx, belong[i]);
        for(int i = 1; i <= M; i++) {
            int x = read(), y = read();
            if(belong[x] == belong[y]) ans[i] = SolveBlock(x, y);
            else q[belong[x]].push_back({x, y, i});
        }
        for(int i = 1; i <= mx; i++) sort(q[i].begin(), q[i].end()), solve(i, q[i]);    
        for(int i = 1; i <= M; i++) printf("%d
    ", ans[i]);
        return 0;
    }
    /*
    8 3
    3 1 7 2 4 5 8 6 
    1 6
    1 3
    2 4
    */
    
  • 相关阅读:
    windows 7下matlab R2010a输入乱码的解决方案
    用 Microsoft Visual C++ 创建一个使用 wpcap.dll 的应用程序,
    E: oss4dkms: 子进程 脚本出错postinstallation 安装升级更新时出错的解决方法
    关于linux下面挂载Windows硬盘,但是无法在Windows下看到数据
    如何读取多个文件,文件后缀名不一致,不过类似source.1 source.2 source.3等
    Fedora 12 13 14基础环境配置
    linux内核空间与用户空间信息交互方法
    HDU 1232 畅通工程(最小生成树+并查集)
    hdu 2647 Reward(拓扑排序,反着来)
    HDU 1532 Drainage Ditches (最大网络流)
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10346860.html
Copyright © 2011-2022 走看看