zoukankan      html  css  js  c++  java
  • HDU 4786Fibonacci Tree(最小生成树)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5934    Accepted Submission(s): 1845


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     
    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     
    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     
    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     
    Sample Output
    Case #1: Yes Case #2: No
     
    Source
     
    Recommend
    We have carefully selected several similar problems for you:  6263 6262 6261 6260 6259 
     
     
    和昨天ysy讲的那道题差不多
    而且这道题在题目中直接给提示了——》黑边为0,白边为1
    这样的话我们做一个最小生成树和一个最大生成树
    如果在这两个值的范围内有斐波那契数,就说明满足条件
     
    简单证明:
    对于最小生成树来说,任意删除一条边,并加入一条没有出现过的边,这样的话权值至多加1,边界为最大生成树
     
     
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int MAXN=1e6+10,INF=1e9+10;
    inline char nc()
    {
        static char buf[MAXN],*p1=buf,*p2=buf;
        return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;
    }
    inline int read()
    {
        char c=nc();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();}
        return x*f;
    }
    struct node
    {
        int u,v,w;
    }edge[MAXN];
    int num=1;
    inline void AddEdge(int x,int y,int z)
    {
        edge[num].u=x;
        edge[num].v=y;
        edge[num].w=z;num++;
    }
    int N,M;
    int fib[MAXN];
    int fa[MAXN];
    int comp1(const node &a,const node &b){return a.w<b.w;}
    int comp2(const node &a,const node &b){return a.w>b.w;}
    int find(int x)
    {
        if(fa[x]==x) return fa[x];
        else return fa[x]=find(fa[x]);
    }
    void unionn(int x,int y)
    {
        int fx=find(x);
        int fy=find(y);
        fa[fx]=fy;
    }
    int Kruskal(int opt)
    {
        if(opt==1) sort(edge+1,edge+num,comp1);
        else sort(edge+1,edge+num,comp2);
        int ans=0,tot=0;
        for(int i=1;i<=num-1;i++)
        {
            int x=edge[i].u,y=edge[i].v,z=edge[i].w;
            if(find(x) == find(y)) continue;
            unionn(x,y);
            tot++;
            ans=ans+z;
            if(tot==N-1) return ans;
        }
    }
    int main()
    {
        #ifdef WIN32
        freopen("a.in","r",stdin);
        #else
        #endif
        int Test=read();
        fib[1]=1;fib[2]=2;
        for(int i=3;i<=66;i++) fib[i]=fib[i-1]+fib[i-2];
         int cnt=0;
         while(Test--)
        {
            N=read(),M=read();num=1;
            for(int i=1;i<=N;i++) fa[i]=i;
            for(int i=1;i<=M;i++)
            {
                int x=read(),y=read(),z=read();
                AddEdge(x,y,z);
                AddEdge(y,x,z);
            }
            int minn=Kruskal(1);
            for(int i=1;i<=N;i++) fa[i]=i;
            int maxx=Kruskal(2);
            bool flag=0;
            for(int i=1;i<=66;i++)
                if(minn <= fib[i] && fib[i] <= maxx) 
                    {printf("Case #%d: Yes
    ",++cnt);flag=1;break;}
            if(flag==0) printf("Case #%d: No
    ",++cnt);
        }
        return 0;
    }
  • 相关阅读:
    元组类型内置方法
    python的两种编程模式
    Python和Python解释器
    异常处理
    文件的三种打开方式
    python解释器的安装
    编程语言的分类
    计算机基础之编程
    linux 安装postgresql
    CentOS7 部署 gitlab
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/8457945.html
Copyright © 2011-2022 走看看