zoukankan      html  css  js  c++  java
  • BZOJ3675: [Apio2014]序列分割(斜率优化)

    Time Limit: 40 Sec  Memory Limit: 128 MB
    Submit: 4186  Solved: 1629
    [Submit][Status][Discuss]

    Description

    小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
    1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
    2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
     
    每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

    Input

    输入第一行包含两个整数n,k(k+1≤n)。

    第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

    Output

    输出第一行包含一个整数,为小H可以得到的最大分数。

    Sample Input

    7 3
    4 1 3 4 0 2 3

    Sample Output

    108

    HINT


    【样例说明】 

    在样例中,小H可以通过如下3轮操作得到108分: 

    1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置 

    将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。 

    2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数 

    字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+ 

    3)=36分。 

    3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个 

    数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)= 

    20分。 

    经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。 

    【数据规模与评分】 

    :数据满足2≤n≤100000,1≤k≤min(n -1,200)。

    Source

    这题,,做的我,,想骂人

    只要你能看出,最终答案与分割顺序无关

    然后剩下的就是卡时间卡空间卡精度了******

    按照上面说的,首先列出裸的dp方程

    $f[i][j]$表示前$i$个分了$j$段,转移的时候枚举从哪里分开

    时间复杂度:$O(N^2k)$

    考虑优化,设$j>k$且$j$比$k$优

    最后可以画为

    $$S_{i} >dfrac {S^{2}_{j}-f_{j}-left( S^{2}_{x}-f_{k} ight) }{S_{i}-S_{k}}$$

    按照套路,发现能斜率优化,然后上模板就行了,单调队列可以滚动掉

    这题是我为数不多会做但是不会写代码的题

    到最后还没在UOJ上卡过去

    // luogu-judger-enable-o2
    // luogu-judger-enable-o2
    #include<cstdio>
    #include<algorithm>
    #include<map>
    #include<vector>
    #define LL long long 
    #define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
    char buf[1 << 21], *p1 = buf, *p2 = buf;
    const int MAXN = 100001;
    const LL INF = 1e18 + 10;
    using namespace std;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, K;
    LL a[MAXN], sum[MAXN];
    LL f[MAXN][2];
    int pre[MAXN][201], q[MAXN], h, t, now = 0;
    LL X(int x) {
        return sum[x];
    }
    LL Y(int x) {
        return sum[x] * sum[x] - f[x][now ^ 1];
    }
    double slope(int x, int y) {
        //printf("%d %d
    ", x, y);
        if(X(y) == X(x)) return -INF;
        return (double)(Y(y) - Y(x)) / (X(y) - X(x));
    }
    main() {
        #ifdef WIN32
        freopen("a.in", "r", stdin);  
        #endif
        N = read(); K = read();
        for(int i = 1; i <= N; i++) a[i] = read(), sum[i] = sum[i - 1] + a[i];
        
        for(int j = 1; j <= K; j++) {
            h = t = 0; now ^= 1;
            for(int i = 1; i <= N; i++) {    
                while(h < t && slope(q[h], q[h + 1]) <= (double)sum[i]) h++;
                int k = q[h];
                f[i][now] = f[k][now ^ 1] + (sum[i] - sum[k]) * sum[k];
                pre[i][j] = k;
                while(h < t && (slope(q[t - 1], q[t]) >= slope(q[t], i))) --t;
                q[++t] = i;
            }
        } 
        printf("%lld
    ", f[N][now]); 
    }
  • 相关阅读:
    模拟http请求 带 chunked解析办法一
    DLL入口函数
    修复吾爱OD数据窗口双击不出现偏移问题
    PE导入表分析
    持仓盈亏公式
    hadoop工作相关
    zookeeper常用命令
    git使用命令行上传文件
    redis中各种数据类型对应的jedis操作命令
    volatile关键字比较好的解释
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9163777.html
Copyright © 2011-2022 走看看