题意
Sol
按照套路把边转成无向图,我们采取的策略是从权值大的向权值小的连边
然后从按权值从小到大枚举每个点,再枚举他们连出去的点(v)
如果(v)的度数(leqslant M),那么就再暴力枚举(v)连出去的点(t),看(u)与(t)是否联通(打标记)
否则暴力枚举(u)连出去的点(t),看(v)与(t)是否联通(直接hash表)
复杂度为(O(M sqrt{M}))
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 100001;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a[MAXN], block, siz[MAXN], flag[MAXN], rak[MAXN], tp[MAXN];
vector<int> v[MAXN];
set<int> s[MAXN];
int comp(const int &x, const int &y) {
return a[x] == a[y] ? x < y : a[x] < a[y];
}
int main() {
N = read(); M = read(); block = sqrt(M);
for(int i = 1; i <= N; i++) a[i] = read(), tp[i] = i;
sort(tp + 1, tp + N + 1, comp);
for(int i = 1; i <= N; i++) rak[tp[i]] = i;
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
if(rak[x] > rak[y]) v[x].push_back(y), siz[x]++;
else v[y].push_back(x), siz[y]++;
}
LL ans = 0;
for(int i = 3; i <= N; i++) {
int x = tp[i];
for(int j = 0, to; j < v[x].size(); j++) flag[to = v[x][j]] = i;
for(int j = 0, to; j < v[x].size(); j++) {
if(siz[to = v[x][j]] <= block) {
for(int k = 0; k < v[to].size(); k++)
if(flag[v[to][k]] == i) ans += a[x];
} else {
for(int k = 0; k < v[x].size(); k++)
if(s[to].count(v[x][k])) ans += a[x];
}
s[x].insert(to);
}
}
cout << ans;
return 0;
}
/*
2 1
13 17
2 1
*/