可以发现,对于每种开关,都可以看成二进制位来转换成一个十进制的数。
那么,由于线性基里的元素构造出来是不会有重复的。
那么我们就是去插入线性基。然后对于每个线性基里的数都有选和不选的可能
所以ans = 1LL<<cnt。不要忘记取模
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; const int N = 2e4+5; const int M = 1e4; const LL Mod = 2008; #define rg register #define pi acos(-1) #define INF 1e18 #define CT0 cin.tie(0),cout.tie(0) #define IO ios::sync_with_stdio(false) #define dbg(ax) cout << "now this num is " << ax << endl; namespace FASTIO{ inline LL read(){ LL x = 0,f = 1;char c = getchar(); while(c < '0' || c > '9'){if(c == '-') f = -1;c = getchar();} while(c >= '0' && c <= '9'){x = (x<<1)+(x<<3)+(c^48);c = getchar();} return x*f; } void print(int x){ if(x < 0){x = -x;putchar('-');} if(x > 9) print(x/10); putchar(x%10+'0'); } } using namespace FASTIO; void FRE(){ /*freopen("data1.in","r",stdin); freopen("data1.out","w",stdout);*/} int n,m,cnt = 0; LL p[55]; void insert(LL x) { for(rg int i = 50;i >= 0;--i) { if(((x>>i)&1) == 0) continue; if(p[i] == 0) { p[i] = x;cnt++; return ; } else x ^= p[i]; } } int main() { n = read(),m = read(); while(m--) { string s;cin >> s; int len = s.size(); LL ma = 0; for(rg int i = 0;i < len;++i) if(s[i] == 'O') ma += (1LL<<i); insert(ma); } LL ans = (1LL<<cnt); printf("%lld ",ans%Mod); system("pause"); }