zoukankan      html  css  js  c++  java
  • NLP之gensim

    一、

    利用 jieba 进行分词,关键词提取

    利用gensim下面的corpora,models,similarities 进行语料库建立,模型tfidf算法,稀疏矩阵相似度分析

    # -*- coding: utf-8 -*-
    
    import jieba
    from gensim import corpora, models, similarities
    from collections import defaultdict
    
    # 定义文件目录
    work_dir = "D:/workspace/PythonSdy/data"
    f1 = work_dir + "/t1.txt"
    f2 = work_dir + "/t2.txt"
    # 读取文件内容
    c1 = open(f1, encoding='utf-8').read()
    c2 = open(f2, encoding='utf-8').read()
    # jieba 进行分词
    data1 = jieba.cut(c1)
    data2 = jieba.cut(c2)
    
    data11 = ""
    # 获取分词内容
    for i in data1:
        data11 += i + " "
    data21 = ""
    # 获取分词内容
    for i in data2:
        data21 += i + " "
    
    doc1 = [data11, data21]
    # print(doc1)
    
    t1 = [[word for word in doc.split()]
          for doc in doc1]
    # print(t1)
    
    # # frequence频率
    freq = defaultdict(int)
    for i in t1:
        for j in i:
            freq[j] += 1
    # print(freq)
    
    # 限制词频
    t2 = [[token for token in k if freq[j] >= 3]
          for k in t1]
    print(t2)
    
    # corpora语料库建立字典
    dic1 = corpora.Dictionary(t2)
    dic1.save(work_dir + "/yuliaoku.txt")
    
    # 对比文件
    f3 = work_dir + "/t3.txt"
    c3 = open(f3, encoding='utf-8').read()
    # jieba 进行分词
    data3 = jieba.cut(c3)
    data31 = ""
    for i in data3:
        data31 += i + " "
    new_doc = data31
    print(new_doc)
    
    # doc2bow把文件变成一个稀疏向量
    new_vec = dic1.doc2bow(new_doc.split())
    # 对字典进行doc2bow处理,得到新语料库
    new_corpor = [dic1.doc2bow(t3) for t3 in t2]
    tfidf = models.TfidfModel(new_corpor)
    
    # 特征数
    featurenum = len(dic1.token2id.keys())
    
    # similarities 相似之处
    # SparseMatrixSimilarity 稀疏矩阵相似度
    idx = similarities.SparseMatrixSimilarity(tfidf[new_corpor], num_features=featurenum)
    sims = idx[tfidf[new_vec]]
    print(sims)

    二、轻量级数据文本相似的处理

    Lsimodel训练模型

    import jieba
    from gensim import corpora
    from gensim import models
    from gensim import similarities
    
    from settings import MONGO_DB
    
    
    content_list = []  # 放数据库中的内容
    for i in MONGO_DB.content.find():  # 查数据库内容,生成器
        content_list.append(i.get("title"))
    
    # 制作语料库
    l1 = content_list
    all_doc_list = []  # 存放jieba分词列表
    for doc in l1:
        doc_list = [word for word in jieba.cut_for_search(doc)]
        all_doc_list.append(doc_list)
    dictionary = corpora.Dictionary(all_doc_list)  #制作词袋 例如: {'什么': 0, '你': 1, '名字': 2, '是': 3, '的': 4, '了': 5, '今年': 6}
    corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]  #  [(1, 1), (5, 1), (6, 1), (7, 1)] bow模型语料库
    lsi = models.LsiModel(corpus)  # 根据语料库训练Lsi模型,向量表示
    # [5*5,6*4,2*3....]
    
    # 百度ai识别的用户语音消息 ,jieba分词 --> 语料库
    def my_gensim(ai_msg):
        doc_test_list = [word for word in jieba.cut_for_search(ai_msg)]  # 分词
        doc_test_vec = dictionary.doc2bow(doc_test_list)  # bow 对象语料库
    
        # 计算文本相似度
        # 稀疏矩阵相似度 将主语料库corpus的训练结果 作为初始值
        index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
        # 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 ,与 语料库corpus的 向量表示 做矩阵相似度计算
        sim = index[lsi[doc_test_vec]] 
        print(sim,enumerate(sim))
        cc = sorted(enumerate(sim), key=lambda item: -item[1])  # 按相似度排序
        print(cc)
        if cc[0][1] > 0.58:
            text = l1[cc[0][0]]
        else:
            text = None
    
        return text
    
    print(my_gensim('xiaoxiao 小的'))
  • 相关阅读:
    三级菜单的实现方式
    简单登录接口实践
    C++中的set和java的hashset有何区别?
    css 利用文档结构给列表添加样式
    谈谈我对JS中this的理解
    谈谈我对JS原型的理解
    使用node.js,实现简单的JS文件合并小工具
    谈谈我对JS闭包的理解
    谈谈我对JS作用域的理解
    模拟实现 百度翻译 右下方的可折叠的分享按钮列表
  • 原文地址:https://www.cnblogs.com/zwq-/p/10889611.html
Copyright © 2011-2022 走看看