zoukankan      html  css  js  c++  java
  • shardingjdbc结合mybatis实现分库分表功能

      最近忙于项目已经好久几天没写博客了,前2篇文章我给大家介绍了搭建基础springMvc+mybatis的maven工程,这个简单框架已经可以对付一般的小型项目。但是我们实际项目中会碰到很多复杂的场景,比如数据量很大的情况下如何保证性能。今天我就给大家介绍数据库分库分表的优化,本文介绍mybatis结合当当网的sharding-jdbc分库分表技术(原理这里不做介绍)

      首先在pom文件中引入需要的依赖

    <dependency>
                <groupId>com.dangdang</groupId>
                <artifactId>sharding-jdbc-core</artifactId>
                <version>1.4.2</version>
            </dependency>
            <dependency>
                <groupId>com.dangdang</groupId>
                <artifactId>sharding-jdbc-config-spring</artifactId>
                <version>1.4.0</version>
            </dependency>

      二、新建一个sharding-jdbc.xml文件,实现分库分表的配置

    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns:context="http://www.springframework.org/schema/context" 
        xmlns:tx="http://www.springframework.org/schema/tx"
        xmlns:rdb="http://www.dangdang.com/schema/ddframe/rdb"
        xsi:schemaLocation="http://www.springframework.org/schema/beans
                            http://www.springframework.org/schema/beans/spring-beans.xsd 
                            http://www.springframework.org/schema/tx 
                            http://www.springframework.org/schema/tx/spring-tx.xsd
                            http://www.springframework.org/schema/context 
                            http://www.springframework.org/schema/context/spring-context.xsd
                            http://www.dangdang.com/schema/ddframe/rdb 
                            http://www.dangdang.com/schema/ddframe/rdb/rdb.xsd">
                    
        <rdb:strategy id="tableShardingStrategy" sharding-columns="user_id" algorithm-class="com.meiren.member.common.sharding.MemberSingleKeyTableShardingAlgorithm"/>
        
        <rdb:data-source id="shardingDataSource">
            <rdb:sharding-rule data-sources="dataSource">
                <rdb:table-rules>
                    <rdb:table-rule logic-table="member_index" actual-tables="member_index_tbl_${[0,1,2,3,4,5,6,7,8,9]}${0..9}"  table-strategy="tableShardingStrategy"/>
                    <rdb:table-rule logic-table="member_details" actual-tables="member_details_tbl_${[0,1,2,3,4,5,6,7,8,9]}${0..9}"  table-strategy="tableShardingStrategy"/>
                </rdb:table-rules>
            </rdb:sharding-rule>
        </rdb:data-source>
        
        <bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
            <property name="dataSource" ref="shardingDataSource" />
        </bean>
    </beans>

      这里我简单介绍下一些属性的含义,

       <rdb:strategy id="tableShardingStrategy" sharding-columns="user_id" algorithm-class="com.meiren.member.common.sharding.MemberSingleKeyTableShardingAlgorithm"/>  配置分表规则器  sharding-columns:分表规 则 

      依赖的名(根据user_id取模分表),algorithm-class:分表规则的实现类 

      <rdb:sharding-rule data-sources="dataSource"> 这里填写关联数据源(多个数据源用逗号隔开),

      <rdb:table-rule logic-table="member_index" actual-tables="member_index_tbl_${[0,1,2,3,4,5,6,7,8,9]}${0..9}"  table-strategy="tableShardingStrategy"/>  logic-table:逻辑表名(mybatis中代替的表名)actual-tables

      数据库实际的表名,这里支持inline表达式,比如:member_index_tbl_${0..2}会解析成member_index_tbl_0,member_index_tbl_1,member_index_tbl_2;member_index_tbl_${[a,b,c]}会被解析成

        member_index_tbl_a,member_index_tbl_b和member_index_tbl_c,两种表达式一起使用的时候,会采取笛卡尔积的方式:member_index_tbl_${[a,b]}${0..2}解析为member_index_tbl_a0,member_index_tbl_a1                                       member_index_tbl_a2,member_index_tbl_b0,member_index_tbl_b1,member_index_tbl_b2;table-strategy:前面定义的分表规则器;

         三、配置好改文件后,需要修改之前我们的spring-dataSource的几个地方,把sqlSessionFactory和transactionManager原来关联的dataSource统一修改为shardingDataSource(这一步作用就是把数据源全部托管给sharding去管理)

      

     四、实现分表(分库)逻辑,我们的分表逻辑类需要实现SingleKeyTableShardingAlgorithm接口的三个方法doBetweenSharding、doEqualSharding、doInSharding

    /**
     * 分表逻辑
     * @author zhangwentao
     *
     */
    public class MemberSingleKeyTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> {
        
        /**
         * sql between 规则
         */
        public Collection<String> doBetweenSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) {
            Collection<String> result = new LinkedHashSet<String>(tableNames.size());
            Range<Long> range = (Range<Long>) shardingValue.getValueRange();
            for (long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
                Long modValue = i % 100;
                String modStr = modValue < 10 ? "0" + modValue : modValue.toString();
                for (String each : tableNames) {
                    if (each.endsWith(modStr)) {
                        result.add(each);
                    }
                }
            }
            return result;
        }
    
        /**
         * sql == 规则
         */
        public String doEqualSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) {
            Long modValue = shardingValue.getValue() % 100;
            String modStr = modValue < 10 ? "0" + modValue : modValue.toString();
            for (String each : tableNames) {
                if (each.endsWith(modStr)) {
                    return each;
                }
            }
            throw new IllegalArgumentException();
        }
    
        /**
         * sql in 规则
         */
        public Collection<String> doInSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) {
    
            Collection<String> result = new LinkedHashSet<String>(tableNames.size());
            for (long value : shardingValue.getValues()) {
                Long modValue = value % 100;
                String modStr = modValue < 10 ? "0" + modValue : modValue.toString();
                for (String tableName : tableNames) {
                    if (tableName.endsWith(modStr)) {
                        result.add(tableName);
                    }
                }
            }
            return result;
        }
        
    }

    五、以上四步,我们就完成了sharding-jdbc的搭建,我们可以写一个测试demo来检查我们的成果

    <select id="getDetailsById" resultType="com.meiren.member.dataobject.MemberDetailsDO"
            parameterType="java.lang.Long">
            select user_id userId ,qq,email from member_details where     user_id =#{userId} limit 1
        </select>
      private static final String SERVICE_PROVIDER_XML = "/spring/member-service.xml";
    	    private static final String BEAN_NAME = "idcacheService";
    	    
    	    private ClassPathXmlApplicationContext context = null;
    	    IdcacheServiceImpl bean = null;
    	    IdcacheDao idcacheDao;
    	    
    	    @Before
    	    public void before() {
    	        context= new ClassPathXmlApplicationContext(
    	                new String[] {SERVICE_PROVIDER_XML});
    	       idcacheDao=context.getBean("IdcacheDao", IdcacheDao.class);
    	    }
    	    
    	    @Test
    	    public void getAllCreditActionTest() {
    	     // int id = bean.insertIdcache();
    	    	Long s=100l;
    	      MemberDetailsDO memberDetailsDO=idcacheDao.getDetailsById(s);
    	      System.out.println("QQ---------------------"+memberDetailsDO.getQq());
    	    }
    

      打印sql语句,输出结果:QQ-------------------------------------100,证明成功!

      注意点:这次搭建过程中,我有碰到一个小坑,就是执行的时候会报错:,官方文档是有解决方案:引入 <context:property-placeholder location="classpath:/member_service.properties" ignore-unresolvable="true" />  ,引入这行代码的时候,·必须要要把这边管理配配置文件的bean删除,换句话说,即Spring容器仅允许最多定义一个PropertyPlaceholderConfigurer(或<context:property-placeholder/>),其余的会被Spring忽略掉(当时搞了半天啊)

    小结:这次给大家分享了sharding-jdbc的配置是为了解决大数据量进行分库分表的架构,下一张,我将介绍拆分业务所需的duboo+zookeeper的配置(分布式),欢迎关注!

  • 相关阅读:
    Xcode常用
    iOS知识点
    iOS Crash上传
    [crash详解与防护] KVO crash
    iOS常见bug
    PHP实现万年历
    在Vue框架中引入Element
    PHP--随机生成颜色
    PHP读取Excel表格数据
    权限管理功能(一)
  • 原文地址:https://www.cnblogs.com/zwt1990/p/6762135.html
Copyright © 2011-2022 走看看