You are given a sequence of numbers a1, a2, ..., an, and a number m.
Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.
The first line contains two numbers, n and m (1 ≤ n ≤ 106, 2 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.
The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).
In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.
3 5
1 2 3
YES
In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.
In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.
In the third sample test you need to choose two numbers 3 on the ends.
In the fourth sample test you can take the whole subsequence.
题意:给你n,m,n个数,让你从中找出任意数的和mod M==0
题解:背包dp
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
//1085422276 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<queue> #include<cmath> #include<map> #include<bitset> #include<set> #include<vector> using namespace std ; typedef long long ll; #define mem(a) memset(a,0,sizeof(a)) #define meminf(a) memset(a,127,sizeof(a)); #define memfy(a) memset(a,-1,sizeof(a)) #define TS printf("111111 "); #define FOR(i,a,b) for( int i=a;i<=b;i++) #define FORJ(i,a,b) for(int i=a;i>=b;i--) #define READ(a,b,c) scanf("%d%d%d",&a,&b,&c) #define maxn 1000005 inline ll read() { ll x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-')f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=x*10+ch-'0'; ch=getchar(); } return x*f; } //**************************************** int hashs[maxn],a[maxn*3]; bool dp[3][maxn]; int main() { mem(hashs); int flag=0; int n=read(),m=read(); FOR(i,1,n) { scanf("%d",&a[i]); a[i]=a[i]%m; if(a[i]==0)a[i]=m; }dp[0][0]=true; dp[1][0]=true; for(int i=1;i<=n;i++) { for(int j=m;j>=0;j--) { if(dp[1][j]) { if(j+a[i]==m){ puts("YES"); return 0; } dp[0][(j+a[i])%m]=true; } } memcpy(dp[1],dp[0],sizeof(dp[0])); } cout<<"NO"<<endl; return 0; }