zoukankan      html  css  js  c++  java
  • BNU 13024 . Fi Binary Number 数位dp/fibonacci数列

    B. Fi Binary Number

     
     

    A Fi-binary number is a number that contains only 0 and 1. It does not contain any leading 0. And also it does not contain 2 consecutive 1. The first few such number are 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, 10101 and so on. You are given n. You have to calculate the nth Fi-Binary number.

     

    Input

    Input starts with an integer T (≤ 10000), denoting the number of test cases.

    Each case contains an integer n (1 ≤ n ≤ 109).

     

    Output

    For each case, print the case number and the nth Fi-Binary number

     

    Sample Input

    Sample Input

    Output for Sample Input

    4

    10

    20

    30

    40

    Case 1: 10010

    Case 2: 101010

    Case 3: 1010001

    Case 4: 10001001

    题意:给你一个01串满足:没有前置0,任意两个1不能相邻,问你第n个这样的数是多少

    题解:这是一种dp思想,  假设最高位是1,那么次高位必须是0,那么有  f[i]=f[i-1]+f[i-2];

       得出来是一个fibonacci数列 打表暴力可求解

    ///1085422276
    #include<bits/stdc++.h>
    using namespace std ;
    typedef long long ll;
    #define mem(a) memset(a,0,sizeof(a))
    #define meminf(a) memset(a,127,sizeof(a))
    #define TS printf("111111
    ")
    #define FOR(i,a,b) for( int i=a;i<=b;i++)
    #define FORJ(i,a,b) for(int i=a;i>=b;i--)
    #define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
    #define inf 100000
    inline ll read()
    {
        ll x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')f=-1;
            ch=getchar();
        }
        while(ch>='0'&&ch<='9')
        {
            x=x*10+ch-'0';
            ch=getchar();
        }
        return x*f;
    }
    //****************************************
    
    #define maxn 1111
    ll f[maxn],sum[maxn];
    void init()
    {
        f[0]=1;
        f[1]=1;;sum[0]=0;sum[1]=1;
        for(int i=2;i<=50;i++)
            f[i]=f[i-1]+f[i-2],sum[i]=sum[i-1]+f[i-1];
    
    }
    int main()
    {
        init();
        int T=read();
        int oo=1;
        while(T--)
        {
             ll n=read();printf ("Case %d: ",oo++);
                 bool flag=0;
           for(int i=50;i>=0;i--)
           {
               if(n>sum[i])
               {
                   n-=sum[i]+1;
                   cout<<1;
                   flag=1;
               }
               else if(flag){
    
                 cout<<0;
               }
           }cout<<endl;
    
        }
        return 0;
    }
    fibonacci
    还可以这样想:  定义dp[i][p]表示长度i 第i+1为p的方案数,那么这题就是一个数位dp了
    ///1085422276
    #include<bits/stdc++.h>
    using namespace std ;
    typedef long long ll;
    #define mem(a) memset(a,0,sizeof(a))
    #define meminf(a) memset(a,127,sizeof(a))
    #define TS printf("111111
    ")
    #define FOR(i,a,b) for( int i=a;i<=b;i++)
    #define FORJ(i,a,b) for(int i=a;i>=b;i--)
    #define READ(a,b,c) scanf("%d%d%d",&a,&b,&c)
    #define inf 1000000001
    inline ll read()
    {
        ll x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')f=-1;
            ch=getchar();
        }
        while(ch>='0'&&ch<='9')
        {
            x=x*10+ch-'0';
            ch=getchar();
        }
        return x*f;
    }
    //****************************************
    
    #define maxn 50
    ll dp[maxn][2];
    ll num[maxn];
    int dfs(int i,int p)
    {
        if(dp[i][p])return dp[i][p];
        if(i<1)return 1;
        int ret=0;
        if(p) ret=dfs(i-1,0);
        else ret=dfs(i-1,0)+dfs(i-1,1);
        dp[i][p]=ret;
        return ret;
    }
    void get(int n)
    {
        bool flag=0;
        for(int i=45;i>1;i--)
        {
            if(n>=num[i])
            {
                n-=num[i];
                cout<<1;
                flag=1;
            }
            else if(flag)cout<<0;
        }
    }
    int main()
    {
        mem(dp);
         for(int i=1;i<=45;i++)num[i]=dfs(i-1,1);
         cout<<num[2]<<endl;
         //  cout<<dp[1][0]<<endl;
        int T=read();
        int oo=1;
        while(T--)
        {
          int   n=read();
            printf("Case %d: ",oo++);
           get(n);cout<<endl;
        }
        return 0;
    }
    数位dp
  • 相关阅读:
    WCF中的自定义类中包括自定义枚举类型时出错
    Asp.Net无刷新上传并裁剪头像
    C# 字符串模糊查找
    .NET中如何通过文本框中按回车键进行的提交数据
    关于Firefox、Safari 与IE区别实际应用的一点心得
    ASP.NET 网速慢时候按钮禁止重复提交
    ASP.NET前台代码绑定后台变量方法总结
    验证功能在IE中没问题,在火狐浏览器中无反应
    aspx 后台cs文件动态修改Lable 样式
    asp.net程序调试 连接池和 "Timeout expired"异常
  • 原文地址:https://www.cnblogs.com/zxhl/p/4906767.html
Copyright © 2011-2022 走看看