zoukankan      html  css  js  c++  java
  • HDU 5654 xiaoxin and his watermelon candy 离线树状数组

    xiaoxin and his watermelon candy



    Problem Description
    During his six grade summer vacation, xiaoxin got lots of watermelon candies from his leader when he did his internship at Tencent. Each watermelon candy has it's sweetness which denoted by an integer number.

    xiaoxin is very smart since he was a child. He arrange these candies in a line and at each time before eating candies, he selects three continuous watermelon candies from a specific range [L, R] to eat and the chosen triplet must satisfies:

    if he chooses a triplet (ai,aj,ak) then:
    1. j=i+1,k=j+1
    2.  aiajak

    Your task is to calculate how many different ways xiaoxin can choose a triplet in range [L, R]?
    two triplets (a0,a1,a2) and (b0,b1,b2) are thought as different if and only if:
    a0b0 or a1b1 or a2b2
     
    Input
    This problem has multi test cases. First line contains a single integer T(T10) which represents the number of test cases.

    For each test case, the first line contains a single integer n(1n200,000)which represents number of watermelon candies and the following line contains ninteger numbers which are given in the order same with xiaoxin arranged them from left to right.
    The third line is an integer Q(1200,000) which is the number of queries. In the following Q lines, each line contains two space seperated integers l,r(1lrn) which represents the range [l, r].
     
    Output
    For each query, print an integer which represents the number of ways xiaoxin can choose a triplet.
     
    Sample Input
    1 5 1 2 3 4 5 3 1 3 1 4 1 5
     
    Sample Output
    1 2 3
     
    题意:
      给你n个数,Q次询问
      每次询问,LR之间有多少个不同的三元组
    题解:
      我们预处理出相同三元组的位置
      这题就变成了 区间处理不同数了
      树状数组做就好了
      但是要注意三元组取的 三位数,这个wa到死
    #pragma comment(linker, "/STACK:10240000,10240000")
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include<map>
    using namespace std;
    const int N = 1e6+10, M = 30005, mod = 1e9+7, inf = 0x3f3f3f3f;
    typedef long long ll;
    //不同为1,相同为0
    
    map< pair< int, pair< int,int> > ,int> mp;
    int T,a[N],n,m,b[N],c,C[N],nex[N],p[N],H[N];
    struct data{int l,r,id,ans;}Q[N];
    int cmp1(data a,data b) {if(a.l==b.l) return a.r<b.r;else return a.l<b.l;}
    int cmp2(data a,data b) {return a.id<b.id;}
     int lowbit(int x) {
            return x&(-x);
        }
        void add(int x, int add) {
            for (; x <= n; x += lowbit(x)) {
                C[x] += add;
            }
        }
        int sum(int x) {
            int s = 0;
            for (; x > 0; x -= lowbit(x)) {
                s += C[x];
            }
            return s;
        }
    int main() {
        scanf("%d",&T);
        while(T--) {
                mp.clear();
                 memset(H,0,sizeof(H));
            memset(p,0,sizeof(p));
            memset(b,-1,sizeof(b));
            memset(C,0,sizeof(C));memset(nex,0,sizeof(nex));
            scanf("%d",&n);
            for(int i=1;i<=n;i++) scanf("%d",&a[i]), b[i] = -1,nex[i] = 0;
            int k = 1;
            for(int i=3;i<=n;i++) {
                if(a[i]>=a[i-1]&&a[i-1]>=a[i-2]) {
                   if(mp[make_pair(a[i-2],make_pair(a[i-1],a[i]))]) b[i] = mp[make_pair(a[i-2],make_pair(a[i-1],a[i]))];
                   else b[i] = k,mp[make_pair(a[i-2],make_pair(a[i-1],a[i]))] = k,H[k] = 1, k++;
                }
                else b[i] = -1;
            }
            for(int i=n;i>=1;i--)
            if(b[i]!=-1)
                nex[i]=p[b[i]],p[b[i]]=i;
            for(int i=1;i<k;i++)
                add(p[i],1);
            int q;
            scanf("%d",&q);
            for(int i=1;i<=q;i++) {
                scanf("%d%d",&Q[i].l,&Q[i].r);Q[i].id = i;
            }
            sort(Q+1,Q+q+1,cmp1);
           int l = 1;
            for(int i=1;i<=q;i++) {
                while(l<Q[i].l+2) {
                    if(nex[l] ) add(nex[l],1);l++;
                }
                if(Q[i].l+2>Q[i].r) Q[i].ans = 0;
                else Q[i].ans = sum(Q[i].r) - sum(Q[i].l+2-1);
            }
            sort(Q+1,Q+q+1,cmp2);
            for(int i=1;i<=q;i++) {
                printf("%d
    ",Q[i].ans);
            }
        }
        return 0;
    }
  • 相关阅读:
    wireshark 实用过滤表达式(针对ip、协议、端口、长度和内容)
    32:从1到n整数中1出现的次数
    31:连续子数组的最大和
    30:最小的K个数
    29:数组中出现次数超过一半的数字
    28:字符串的排列
    27:二叉搜索树与双向链表
    26:复杂链表的复制
    25:二叉树中和为某一个定值的路径
    24:二叉搜索树的后序遍历序列
  • 原文地址:https://www.cnblogs.com/zxhl/p/5336850.html
Copyright © 2011-2022 走看看