题目背景
07四川省选
题目描述
在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外。
每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石柱上。石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不变),如果该石柱原来高度为1,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。任何时刻不能有两只蜥蜴在同一个石柱上。
输入输出格式
输入格式:输入第一行为三个整数r,c,d,即地图的规模与最大跳跃距离。以下r行为石柱的初始状态,0表示没有石柱,1~3表示石柱的初始高度。以下r行为蜥蜴位置,“L”表示蜥蜴,“.”表示没有蜥蜴。
输出格式:输出仅一行,包含一个整数,即无法逃离的蜥蜴总数的最小值。
输入输出样例
输入样例#1:
复制
5 8 2 00000000 02000000 00321100 02000000 00000000 ........ ........ ..LLLL.. ........ ........
输出样例#1: 复制
1
说明
100%的数据满足:1<=r, c<=20, 1<=d<=4
首先将每一个石块拆为两个点,容量为其高度;
设源点和汇点,
st 和每一个蜥蜴的位置连容量为1的边,
如果可以跳出自然与ed连inf 的边;
如果在给定的dis范围内,每个点的出与另一个点的入连inf的边;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 200005 #define inf 0x3f3f3f3f //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n, m; int st, ed; struct node { int u, v, nxt, w; }edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) { edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w; edge[cnt].nxt = head[u]; head[u] = cnt++; } int rk[maxn]; int bfs() { queue<int>q; ms(rk); rk[st] = 1; q.push(st); while (!q.empty()) { int tmp = q.front(); q.pop(); for (int i = head[tmp]; i != -1; i = edge[i].nxt) { int to = edge[i].v; if (rk[to] || edge[i].w <= 0)continue; rk[to] = rk[tmp] + 1; q.push(to); } } return rk[ed]; } int dfs(int u, int flow) { if (u == ed)return flow; int add = 0; for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) { int v = edge[i].v; if (rk[v] != rk[u] + 1 || !edge[i].w)continue; int tmpadd = dfs(v, min(edge[i].w, flow - add)); if (!tmpadd) { rk[v] = -1; continue; } edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd; } return add; } int ans; void dinic() { while (bfs())ans += dfs(st, inf); } int mp[100][100]; int hight[100][100]; int x[maxn], y[maxn]; int fg[1000][1000]; double dis(int a, int b, int x, int y) { return (a - x)*(a - x) + (b - y)*(b - y); } double getid(int a, int b) { return (a - 1)*m + b; } int main() { //ios::sync_with_stdio(0); memset(head, -1, sizeof(head)); rdint(n); rdint(m); int d; rdint(d); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { char ch; cin >> ch; hight[i][j] = ch - '0'; } } int tot = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { char ch; cin >> ch; if (ch == 'L') { fg[i][j] = 1; tot++;// 总的蜥蜴数量 } } } st = 2 * n*m + 1; ed = st + 1; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int id = getid(i, j); if (hight[i][j]) { // 拆点,分为出、入 addedge(id, id + n * m, hight[i][j]); addedge(id + n * m, id, 0); if (i + d > n || i - d<1 || j + d>m || j - d < 1) { // 跳出 addedge(id + n * m, ed, inf); addedge(ed, id + n * m, 0); } if (fg[i][j]) { addedge(st, id, 1); addedge(id, st, 0); } } } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { for (int a = 1; a <= n; a++) { for (int b = 1; b <= m; b++) { if (dis(i, j, a, b) <= d * d) { int id1 = getid(i, j); int id2 = getid(a, b); addedge(id1 + n * m, id2, inf); addedge(id2, id1 + n * m, 0); addedge(id2 + n * m, id1, inf); addedge(id1, id2 + n * m, 0); } } } } } dinic(); cout << tot - ans << endl; return 0; }