题目描述
输入输出格式
输入格式:输入文件第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。
输出格式:输出满足条件的树有多少棵。
输入输出样例
输入样例#1:
复制
4 2 1 2 1
输出样例#1: 复制
2
首先不知道prufer序列的可以学一下;
https://blog.csdn.net/update7/article/details/77587329
知道以后,其实就是依据该序列来还原树;
prufer的长度为n-2,所以全排列为(n-2)!;
考虑重复排列;
那么:
然后分解质因数即可;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 200005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-11 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n; ll d[200]; ll ct[200]; void sol(int x, int k) { int dv = 2; while (x > 1) { if (x%dv == 0) { ct[dv] += k; x /= dv; } else dv++; } } int main() { // ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); n = rd(); int tot = 0; for (int i = 1; i <= n; i++) { rdllt(d[i]); if (d[i] > 1)tot += (d[i] - 1); } if (n == 1) { if (!d[1])cout << 1 << endl; else cout << 0 << endl; return 0; } if (tot != n - 2) { cout << 0 << endl; return 0; } for (int i = 2; i <= n - 2; i++) { sol(i, 1); } for (int i = 1; i <= n; i++) { for (int j = 2; j < d[i]; j++) { sol(j, -1); } } ll ans = 1; for (ll i = 1; i <= n; i++) { for (ll j = 1; j <= ct[i]; j++)ans *= i; } printf("%lld ", ans * 1ll); return 0; }