题目描述
给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除。
输入描述:
两个整数n(2<=n<=1000),a(2<=a<=1000)
输出描述:
一个整数.
示例1
输出
复制1
分解质因数取min即可;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 200005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-11 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int pme[maxn]; int tot; int vis[maxn]; int cnt[maxn]; void init() { for (int i = 2; i < maxn; i++) { if (!vis[i]) { pme[++tot] = i; for (int j = i; j < maxn; j += i) { vis[j] = 1; } } } } int num[maxn]; int main() { int n, a; scanf("%d%d", &n, &a); init(); for (int i = 1; i <= tot; i++) { int tmp = n; while (tmp) { cnt[pme[i]] += tmp / pme[i]; tmp /= pme[i]; } } int minn = 999999; /* for(int i=1;i<=tot;i++){ if(cnt[pme[i]]){ cout<<pme[i]<<' '<<cnt[pme[i]]<<endl; } } */ for (int i = 1; i <= tot; i++) { while (a%pme[i] == 0) { num[i]++; a /= pme[i]; } } for (int i = 1; i <= tot; i++) { if(num[i]) minn = min(minn, cnt[pme[i]] / num[i]); } cout << minn << endl; }