题目描述
这是一道比较基础的数论题。
给出一个整数 n,计算。
输入描述
输入一行包含一个整数 n(1 leq n leq 10^{10})n(1≤n≤1010)。
输出描述
输出一行一个整数,表示答案。答案可能很大,请对 998244353998244353 取模后输出。
样例输入 1
5
样例输出 1
14
样例输入 2
100
样例输出 2
3631
枚举d,则原式为:
把d提出来:
即:
然后后面那个式子就套莫比乌斯反演:设
注意此n非彼n,下面的n都代表原本的n/d,原来的n用N表示。
设 

则

g(x)是个什么玩意

把x提出来

显然1|gcd(i,j)永远成立,即

带回去:

把n换回去

然后又是经典套路。
设

则

前面可以分块搞。
后面,可以观察到是两个莫比乌斯函数相卷积
上杜教筛。
设
,
为其前缀和。


设

拿出杜教筛的式子

问题来了,拿什么做g?
答案:


即

然后就是杜教筛搞了。
#include <bits/stdc++.h> #define maxn 10000005 using namespace std; typedef long long ll; ll prime[maxn/10],phi[maxn]; ll mob[maxn],T[maxn],sum[maxn]; bool vis[maxn]; int cnt; const ll mod=998244353; unordered_map<ll,ll> dmu,dT; void init() { mob[1]=phi[1]=T[1]=1; for(int i=2;i<maxn;++i) { if(!vis[i]) { prime[cnt++]=i; T[i]=-2; mob[i]=-1; } for(int j=0;j<cnt&&prime[j]*i<maxn;++j) { vis[i*prime[j]]=true; if(i%prime[j]) { mob[i*prime[j]]=-mob[i]; T[i*prime[j]]=T[i]*T[prime[j]]; } else { if((i/prime[j])%prime[j]) { T[i*prime[j]]=T[i/prime[j]]; } break; } } } for(ll i=1;i<maxn;++i) { sum[i]=(sum[i-1]+mob[i]+mod)%mod; } for(ll i=1;i<maxn;++i) { T[i]=(T[i-1]+T[i]+mod)%mod; } } ll djmu(ll n) { ll res=1; if(n<maxn) return sum[n]; else if(dmu.count(n)) return dmu[n]; ll tmp; for(ll i=2;i<=n;i=tmp+1) { tmp=n/(n/i); res-=djmu(n/i)*(tmp-i+1)%mod; } res=(res%mod+mod)%mod; return dmu[n]=res; } ll djT(ll n) { if(n<maxn) return T[n]; if(dT.count(n)) return dT[n]; ll res=djmu(n),tmp; for(ll i=2;i<=n;i=tmp+1) { tmp=n/(n/i); res=(res-(tmp-i+1)*djT(n/i)%mod+mod)%mod; } res=(res+mod)%mod; return dT[n]=res; } int main() { ll n,tmp,res=0; init(); cin>>n; //cout<<djT(1e9)<<" "<<djmu(1e9)<<endl; for(ll i=1;i<=n;i=tmp+1) { tmp=n/(n/i); ll temp=(n/i)%mod; temp=temp*temp%mod; temp=(djT(tmp)-djT(i-1)+mod)%mod*temp%mod; res=(res+temp)%mod; } cout<<res<<endl; return 0; }