zoukankan      html  css  js  c++  java
  • Problem B. Harvest of Apples

    Problem Description
    There are n apples on a tree, numbered from 1 to n.
    Count the number of ways to pick at most m apples.
     
    Input
    The first line of the input contains an integer T (1T105) denoting the number of test cases.
    Each test case consists of one line with two integers n,m (1mn105).
     
    Output
    For each test case, print an integer representing the number of ways modulo 109+7.
     
    Sample Input
    2 5 2 1000 500
     
    Sample Output
    16 924129523
     
    Source
     
    Recommend
    chendu   |   We have carefully selected several similar problems for you:  6343 6342 6341 6340 6339 
     
    莫队,O(1)转移为:f(n,m+1)=f(n,m)+C(n,m+1)
    f(n+1,m)=2f(n,m)-C(n,m).
    #include <bits/stdc++.h>
    #define maxn 100505
    using namespace std;
    typedef long long ll;
    const ll mod =1e9+7;
    struct node
    {
        ll l,r,pos;
    }query[maxn];
    ll block;
    ll fact[maxn],inv[maxn];
    ll Pow(ll x,ll n){
        ll ans=1,base=x;
        while(n){
            if(n&1) ans=ans*base%mod;
            base=base*base%mod;
            n>>=1;
        }
        return ans;
    }
    void init(){
        fact[0]=1;
        for (int i = 1; i < maxn; ++i)
        {
            fact[i]=fact[i-1]*i%mod;
        }
        inv[maxn-1]=Pow(fact[maxn-1],mod-2);
        for (int i = maxn-2; i >= 0; --i)
        {
            inv[i]=inv[i+1]*(i+1)%mod;
        }
    }
    ll C(ll n, ll m)
    {
        if(n==m||m==0)
            return 1;
        if(m>n) return 0;
        return ((long long)fact[n]*inv[m]%mod)*inv[n-m]%mod;
    }
    bool cmp(node a,node b)
    {
        if((a.l/block)==(b.l/block))
        {
            return a.r<b.r;
        }
        return ((a.l/block)<(b.l/block));
    }
    ll ans[maxn];
    int main()
    {
        ll t,i;
        init();
        //cout<<C(6,4)<<endl;
        scanf("%lld",&t);
        ll maxim=0;
        for(i=1;i<=t;i++)
        {
            scanf("%lld%lld",&query[i].l,&query[i].r);
            query[i].pos=i;
            maxim=max(maxim,query[i].l);
        }
        block=sqrt(maxim);
        sort(query+1,query+1+t,cmp);
        ll le=1,ri=1;
        ll now=2;//le=n,ri=m;
        for(i=1;i<=t;i++)
        {
            while(le<query[i].l)
            {
                now=(2*now-C(le,ri)+mod)%mod;
                le++;
            }
            while(le>query[i].l)
            {   le--;
                now=((now+C(le,ri))%mod*inv[2]%mod)%mod;
            }
            while(ri<query[i].r)
            {   ri++;
                now=(now+C(le,ri))%mod;
            }
            while(ri>query[i].r)
            {
                now=(now-C(le,ri)+5*mod)%mod;
                ri--;
            }
            ans[query[i].pos]=now;
        }
        for(i=1;i<=t;i++)
        {
            printf("%lld
    ",ans[i]);
        }
        return 0;
    }
    

      

     
  • 相关阅读:
    3-AII--BroadcastReceiver实现锁、开屏、短信监听
    grpc入门2
    关于golang中某些包无法下载的解决方法
    grpc入门
    grpc安装
    小鼠试毒问题(二进制)
    gomod
    POJ 1743 Musical Theme ——后缀数组
    SPOJ DISUBSTR ——后缀数组
    BZOJ 4066 简单题 ——KD-Tree套替罪羊树
  • 原文地址:https://www.cnblogs.com/zyf3855923/p/9406286.html
Copyright © 2011-2022 走看看