zoukankan      html  css  js  c++  java
  • 1645: [Usaco2007 Open]City Horizon 城市地平线

    1645: [Usaco2007 Open]City Horizon 城市地平线

    Time Limit: 5 Sec  Memory Limit: 64 MB
    Submit: 315  Solved: 157
    [Submit][Status]

    Description

    Farmer John has taken his cows on a trip to the city! As the sun sets, the cows gaze at the city horizon and observe the beautiful silhouettes formed by the rectangular buildings. The entire horizon is represented by a number line with N (1 <= N <= 40,000) buildings. Building i's silhouette has a base that spans locations A_i through B_i along the horizon (1 <= A_i < B_i <= 1,000,000,000) and has height H_i (1 <= H_i <= 1,000,000,000). Determine the area, in square units, of the aggregate silhouette formed by all N buildings.

    N个矩形块,交求面积并.

    Input

    * Line 1: A single integer: N

    * Lines 2..N+1: Input line i+1 describes building i with three space-separated integers: A_i, B_i, and H_i

    Output

    * Line 1: The total area, in square units, of the silhouettes formed by all N buildings

    Sample Input

    4
    2 5 1
    9 10 4
    6 8 2
    4 6 3

    Sample Output

    16

    OUTPUT DETAILS:

    The first building overlaps with the fourth building for an area of 1
    square unit, so the total area is just 3*1 + 1*4 + 2*2 + 2*3 - 1 = 16.

    HINT

    Source

    题解:
    这题的思路比较巧妙。
    全部的图形被分成了2*n-1个矩形,所以只要用线段树维护每一个矩形的高即可,取max
    代码:(copy)
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 #define ll long long
     7 #define inf 10000000000
     8 using namespace std;
     9 inline ll read()
    10 {
    11     int x=0,f=1;char ch=getchar();
    12     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    13     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    14     return x*f;
    15 }
    16 int n;
    17 int x[40005],y[40005],val[40005],disc[80005];
    18 struct seg{int l,r,mx,tag;}t[320005];
    19 int find(int x)
    20 {
    21     int l=1,r=2*n;
    22     while(l<=r)
    23     {
    24         int mid=(l+r)>>1;
    25         if(disc[mid]<x)l=mid+1;
    26         else if(disc[mid]==x)return mid;
    27         else r=mid-1;
    28     }
    29 }
    30 void pushdown(int k)
    31 {
    32     if(t[k].l==t[k].r)return;
    33     int tag=t[k].tag;t[k].tag=0;
    34     if(tag)
    35     {
    36         t[k<<1].tag=max(t[k<<1].tag,tag);
    37         t[k<<1|1].tag=max(t[k<<1|1].tag,tag);
    38         t[k<<1].mx=max(t[k<<1].mx,tag);
    39         t[k<<1|1].mx=max(t[k<<1|1].mx,tag);
    40     }
    41 }
    42 void build(int k,int l,int r)
    43 {
    44     t[k].l=l;t[k].r=r;
    45     if(l==r)return;
    46     int mid=(l+r)>>1;
    47     build(k<<1,l,mid);build(k<<1|1,mid+1,r);
    48 }
    49 void update(int k,int x,int y,int val)
    50 {
    51     pushdown(k);
    52     int l=t[k].l,r=t[k].r;
    53     if(l==x&&y==r)
    54     {
    55         t[k].tag=val;t[k].mx=max(t[k].mx,val);
    56         return;
    57     }
    58     int mid=(l+r)>>1;
    59     if(y<=mid)update(k<<1,x,y,val);
    60     else if(x>mid)update(k<<1|1,x,y,val);
    61     else
    62     {
    63         update(k<<1,x,mid,val);update(k<<1|1,mid+1,y,val);
    64     }
    65 }
    66 int query(int k,int x)
    67 {
    68     pushdown(k);
    69     int l=t[k].l,r=t[k].r;
    70     if(l==r)return t[k].mx;
    71     int mid=(l+r)>>1;
    72     if(x<=mid)return query(k<<1,x);
    73     else return query(k<<1|1,x);
    74 }
    75 int main()
    76 {
    77     n=read();build(1,1,n<<1);
    78     for(int i=1;i<=n;i++)
    79     {
    80         x[i]=read(),y[i]=read(),val[i]=read();
    81         disc[(i<<1)-1]=x[i];disc[i<<1]=y[i];
    82     }
    83     sort(disc+1,disc+(n<<1)+1);
    84     for(int i=1;i<=n;i++)
    85         x[i]=find(x[i]),y[i]=find(y[i]);
    86     for(int i=1;i<=n;i++)
    87     {
    88         update(1,x[i],y[i]-1,val[i]);
    89     }
    90     ll ans=0;
    91     for(int i=1;i<2*n;i++)
    92     {
    93         ans+=(ll)query(1,i)*(disc[i+1]-disc[i]);
    94     }
    95     printf("%lld",ans);
    96     return 0;
    97 }
    View Code
  • 相关阅读:
    SQL Server数据库读写分离提高并发性
    静态方法与实例化方法区别
    消息队列MQ对比
    【Python】socket模块应用
    【Matplotlib】利用Python进行绘图
    【Git】简单使用
    【HTTPS】自签CA证书 && nginx配置https服务
    【HTTP】 认证和单点登录 【瞎写的…】
    【Linux】防火墙与CentOS中的iptables
    【Ansible】的python api
  • 原文地址:https://www.cnblogs.com/zyfzyf/p/3992526.html
Copyright © 2011-2022 走看看