zoukankan      html  css  js  c++  java
  • 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码

    PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉、自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能。通过学习《深度学习入门之PyTorch》,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型。学到机器学习中的线性回归和 Logistic 回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络,以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果,以及 PyTorch 在实际项目中的应用。

    《深度学习之Pytorch(廖星宇著)》PDF,232页,带书签,文字可以复制。

    《PyTorch深度学习实战(侯宜军 著)》PDF,121页,带书签,文字可以粘贴;配套源代码。

    网盘下载:http://106.13.73.98/abc/213


    ![](https://img2018.cnblogs.com/other/1499715/201906/1499715-20190604164221378-1147333725.png)

    PyTorch和Tensorflow,Keras,Theano等其他深度学习框架都不同,它是动态计算图模式,其应用模型支持在运行过程中根据运行参数动态改变,而其他几种框架都是静态计算图模式,其模型在运行之前就已经确定。

  • 相关阅读:
    Attributes in C#
    asp.net C# 时间格式大全
    UVA 10518 How Many Calls?
    UVA 10303 How Many Trees?
    UVA 991 Safe Salutations
    UVA 10862 Connect the Cable Wires
    UVA 10417 Gift Exchanging
    UVA 10229 Modular Fibonacci
    UVA 10079 Pizza Cutting
    UVA 10334 Ray Through Glasses
  • 原文地址:https://www.cnblogs.com/zyk01/p/10978447.html
Copyright © 2011-2022 走看看