zoukankan      html  css  js  c++  java
  • hdu1162:Eddy's picture(最小生成树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1162

    Problem Description

    Eddy begins to like painting pictures recently ,he is sure of himself to become a painter.Every day Eddy draws pictures in his small room, and he usually puts out his newest pictures to let his friends appreciate. but the result it can be imagined, the friends are not interested in his picture.Eddy feels very puzzled,in order to change all friends 's view to his technical of painting pictures ,so Eddy creates a problem for the his friends of you.
    Problem descriptions as follows: Given you some coordinates pionts on a drawing paper, every point links with the ink with the straight line, causes all points finally to link in the same place. How many distants does your duty discover the shortest length which the ink draws?

    Input

    The first line contains 0 < n <= 100, the number of point. For each point, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the point.

    Input contains multiple test cases. Process to the end of file.

    Output

    Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the points.

    Sample Input

    3
    1.0 1.0
    2.0 2.0
    2.0 4.0

    Sample Output

    3.41

    题意分析:

    给出n个点,求把这些点连接起来的最小长度。

    Prim算法:

    #include <stdio.h>
    #include <string.h> 
    #include <math.h>
    #define N 120
    double e[N][N], dis[N];
    int book[N];
    struct data{ 
    	double x;
    	double y;
    }a[N];
    int main()
    {
    	int n, i, j,  u, v, count, inf=99999999;
    	double mini, sum;
    	while(scanf("%d", &n)!=EOF)
    	{
    		for(i=1; i<=n; i++)
    			for(j=1; j<=n; j++)
    				if(i==j)
    					e[i][j]=0;
    				else
    					e[i][j]=inf;
    		for(i=1; i<=n; i++)
    		{
    			scanf("%lf %lf", &a[i].x, &a[i].y);
    			for(j=1; j<=n; j++)
    				e[i][j]=e[j][i]=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x) + (a[i].y-a[j].y)*(a[i].y-a[j].y));
    		}
    		for(i=1; i<=n; i++)
    			dis[i]=e[1][i];
    		memset(book, 0, sizeof(book));
    		book[1]=1;
    		sum=0;
    		count=1;
    		while(count<n)
    		{
    			mini=inf;
    			for(i=1; i<=n; i++)	
    			{
    				if(book[i]==0 && dis[i]<mini)
    				{
    					mini=dis[i];
    					u=i;
    				}
    			}
    			sum+=dis[u];
    			book[u]=1;
    			count++;
    			for(v=1; v<=n; v++)
    				if(!book[v] && e[u][v]<dis[v])
    					dis[v]=e[u][v];
    		}
    		printf("%.2lf
    ", sum);	
    	}
    	return 0;
    }

    Kruskal算法:

    #include <stdio.h>
    #include <string.h> 
    #include <math.h>
    #include <algorithm>
    using namespace std;
    #define N 120
    int f[N];
    struct data{ 
    	double x;
    	double y;
    }a[N];
    struct cou{
    	int u;
    	int v;
    	double l;
    }e[N*N];
    int cmp(cou a, cou b)
    {
    	return a.l<b.l;
    }
    int getf(int v)
    {
    	if(f[v]==v)
    		return v;
    	else
    	{
    		f[v]=getf(f[v]);
    		return f[v];
    	}
    }
    int merge(int u, int v)
    {
    	int t1, t2;
    	t1=getf(u);
    	t2=getf(v);
    	if(t1!=t2)
    	{
    		f[t2]=t1;
    		return 1;
    	}
    	return 0;
    }
    int main()
    {
    	int n, i, j, t, count, inf=99999999;
    	double mini, sum;
    	while(scanf("%d", &n)!=EOF)
    	{
    		count=0;
    		for(i=1; i<=n; i++)
    		{
    			scanf("%lf %lf", &a[i].x, &a[i].y);
    			for(j=1; j<i; j++)
    			{
    				e[count].u=i;
    				e[count].v=j;
    				e[count].l=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x) + (a[i].y-a[j].y)*(a[i].y-a[j].y));
    				count++;
    			}	
    		}
    		sort(e, e+count, cmp);
    		for(i=1; i<=n; i++)
    			f[i]=i;
    		t=0;
    		sum=0;
    		for(i=0; i<count; i++)
    		{
    			if(merge(e[i].u, e[i].v))
    			{
    				t++;
    				sum+=e[i].l;
    			}
    			if(t==n-1)
    				break;
    		}
    		printf("%.2lf
    ", sum);
    	}
    	return 0;
    }
  • 相关阅读:
    1203—颜文生—自动机实验
    11-11 优点缺点评价
    操作系统之银行家算法避免死锁
    操作系统之实验三 进程调度模拟程序
    操作系统之实验二作业调度模拟程序
    操作系统之实验二Step1-有序顺序表
    复利计算程序的单元测试
    操作系统之实验一 命令解释程序的编写
    复利计算程序之最新版
    《构建之法》第1.2.3章的感悟
  • 原文地址:https://www.cnblogs.com/zyq1758043090/p/11852653.html
Copyright © 2011-2022 走看看