http://acm.hdu.edu.cn/showproblem.php?pid=1297
Problem Description
There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
Input
There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)
Output
For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.
Sample Input
1
2
3
Sample Output
2
4
6
题意分析:
让n个人排队,女生不能单独站,也就是说女生的旁边一定有其他的女生,问一共有多少种排法。
解题思路:
1.当最后一个人是男生时,前面一个人没有要求,为a[n-1];
2.当最后一个人为女生时,前面的人必须为女生,为a[n-2];
但是有一种情况没有考虑: 男女|女女,满足第二种情况,但是因为a[n-2]中最后两个为 男女 不符合情况所以没有计算,
加上这种情况是a[n-4]。
所以可以推出a[n]=a[-1]+a[n-2]+a[n-4]。
#include <stdio.h>
#include <algorithm>
using namespace std;
#define N 1020
int ans[N][N], w[N];
void add(int a, int b)
{
int temp=0, i;
for(i=0; i<=max(w[a], w[b]); i++)
{
ans[a][i]+=ans[b][i]+temp;
temp=ans[a][i]/10;
ans[a][i]=ans[a][i]%10;
}
if(temp)
ans[a][i++]=temp;
w[a]=i-1;
}
int main()
{
int i, n;
ans[1][1]=1;
ans[2][1]=2;
ans[3][1]=4;
ans[4][1]=7;
w[1]=w[2]=w[3]=w[4]=1;
for(i=5;i<=1000;i++)
{
add(i, i-1);
add(i, i-2);
add(i, i-4);
}
while(scanf("%d", &n)!=EOF)
{
for(i=w[n]; i>=1; i--)
printf("%d", ans[n][i]);
printf("
");
}
return 0;
}