zoukankan      html  css  js  c++  java
  • hdu1297:Children’s Queue(大数递推)

    http://acm.hdu.edu.cn/showproblem.php?pid=1297

    Problem Description

    There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
    FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
    Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?

    Input

    There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)

    Output

    For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.

    Sample Input

    1
    2
    3

    Sample Output

    2
    4
    6

    题意分析:

    让n个人排队,女生不能单独站,也就是说女生的旁边一定有其他的女生,问一共有多少种排法。

    解题思路:

    1.当最后一个人是男生时,前面一个人没有要求,为a[n-1];

    2.当最后一个人为女生时,前面的人必须为女生,为a[n-2];

    但是有一种情况没有考虑: 男女|女女,满足第二种情况,但是因为a[n-2]中最后两个为 男女 不符合情况所以没有计算,

    加上这种情况是a[n-4]。

    所以可以推出a[n]=a[-1]+a[n-2]+a[n-4]。

    #include <stdio.h>
    #include <algorithm>
    using namespace std;
    #define N 1020
    int ans[N][N], w[N];
    void add(int a, int b)
    {
    	int temp=0, i;
    	for(i=0; i<=max(w[a], w[b]); i++)
    	{
    		ans[a][i]+=ans[b][i]+temp;
    		temp=ans[a][i]/10;
    		ans[a][i]=ans[a][i]%10;
    	}
    	if(temp)
    		ans[a][i++]=temp;
    	w[a]=i-1;
    }
    int main()
    {
    	int i, n;
    	ans[1][1]=1;
    	ans[2][1]=2;
    	ans[3][1]=4;
    	ans[4][1]=7;
    	w[1]=w[2]=w[3]=w[4]=1;
    	for(i=5;i<=1000;i++)
    	{
    		add(i, i-1);
    		add(i, i-2);
    		add(i, i-4);
    	}
    	while(scanf("%d", &n)!=EOF)
    	{
    		for(i=w[n]; i>=1; i--)
    			printf("%d", ans[n][i]);
    		printf("
    ");
    	}
    	return 0;
    }
  • 相关阅读:
    (十三)过滤器Filter(转)
    (十二)会话跟踪技术之servlet通信(forward和include)
    (十一)会话跟踪技术之作用域(request、session、servletContext)
    openjdk源码目录结构
    java socket相关的timeout
    eclipse创建maven web app
    hadoop mapred和mapreduce包
    hadoop shuffle
    bash shell和进程
    bash shell中的特殊用法
  • 原文地址:https://www.cnblogs.com/zyq1758043090/p/11852713.html
Copyright © 2011-2022 走看看