zoukankan      html  css  js  c++  java
  • STM32F4 定时器TIM1输出七路PWM信号【使用库函数】

    【实验目的】

    输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。

    【实验内容】

    输出7路PWM信号,并用示波器测量输出。

    【实验原理】

    1、时基单元初始化

    TIM1和TIM8使用内部时钟时,时钟由APB2提供。但是定时器的时钟并不是直接由APB2提供,而是来自于输入为APB2的一个倍频器。当APB2的与分频系数为1时,这个倍频器不起作用,定时器时钟频率等于APB2时钟。当APB2预分频系数为其他时这个倍频器起作用。定时器的输入频率等于APB2的2倍。本实验中,APB2时钟被设置成了84M是对系统时钟进行2分频。因此定时器的输入时钟是84M×2 = 168M = SYSCLK。(PS:这个倍频我在ST的手册上边没有找到,是网上搜索得到的结果,与实际结果对比是正确的)

    TIM_Prescaler 为预分频值,为0时分频系数为1.

    TIM_Period 为每个周期计数值,从0开始计数所以其值应为计数次数减去1。

    TIM_RepetitionCounter是F4新增的一个东西,只有高级定时器TIM1和TIM8有效,对应寄存器RCR。意思就是每TIM_RepetitionCounter+1个技术周期产生一次中断。

    我定义的时基如下,将产生频率为20K的即使基准:

    TimerPeriod = (SystemCoreClock / 20000 ) - 1;

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
    //时基初始化
    TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
    TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;  //计数器方向
    TIM_TimeBaseInitStructure.TIM_Prescaler = 0;   //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
    TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
    TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1;    //Period = (TIM counter clock / TIM output clock) - 1 = 20K
    TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);

    2、计时输出

    ccr1、2、3、4为各个技术周期的TIM_Pulse。即每当计数到这些个值的时候,PWM波形就会反转。

    ccr1 = TimerPeriod / 2;  //占空比1/2 = 50%
    ccr2 = TimerPeriod / 3;  //占空比1/3 = 33%
    ccr3 = TimerPeriod / 4;  //占空比1/4 = 25%
    ccr4 = TimerPeriod / 5;  //占空比1/5 = 20%

    定义输出部分:

    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
    TIM_OCInitStructure.TIM_Pulse = ccr1;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;//输出同相,TIM_OCNPolarity_High时输出反相
    TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
    TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

    TIM_OC1Init(TIM1,&TIM_OCInitStructure);

    TIM_OCInitStructure.TIM_Pulse = ccr2;
    TIM_OC2Init(TIM1,&TIM_OCInitStructure);

    TIM_OCInitStructure.TIM_Pulse = ccr3;
    TIM_OC3Init(TIM1,&TIM_OCInitStructure);

    TIM_OCInitStructure.TIM_Pulse = ccr4;
    TIM_OC4Init(TIM1,&TIM_OCInitStructure);

    TIM_Cmd(TIM1,ENABLE);
    TIM_CtrlPWMOutputs(TIM1,ENABLE);

    3、到这里就完成了定时器的配置,下边是GPIO引脚的配置

    使用GPIOE的8、9、10、11、12、13、14引脚进行PWM输出。配置如下:

    void TIM1_GPIO_Config(void)
    {
      //PE 8 9 10 11 12 13 14输出
      GPIO_InitTypeDef GPIO_InitStructure;
      RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
      GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
      GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
                                    | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
      GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
      GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
      GPIO_Init(GPIOE,&GPIO_InitStructure);

      GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);
    }

    输出波形图:

    同相输出时候:

    OC1/OC1N

    IMAG2200

    OC2/OC2N

    IMAG2201

    OC3/OC3/N

    IMAG2202

    OC4

    IMAG2203

    反相输出

    OC1/OC1N

    IMAG2204

    OC2/OC2N

    IMAG2205

    OC3/OC3/N

    IMAG2206

    OC4

    IMAG2207

    完整的应用代码:

    使用时只主要两行即可

    //主函数调用

       TIM1_GPIO_Config();
       Tim1_Config();

    //定时器输出引脚初始化

    void TIM1_GPIO_Config(void)
    {
      //PE 8 9 10 11 12 13 14输出
      GPIO_InitTypeDef GPIO_InitStructure;
      RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
      GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
      GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
                                    | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
      GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
      GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
      GPIO_Init(GPIOE,&GPIO_InitStructure);
     
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
      GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);
       
    }

    //TIM1做PWM输出
    void Tim1_Config(void)
    {
      TimerPeriod =  (SystemCoreClock / 20000 ) - 1;
      ccr1 = TimerPeriod / 2;  //占空比1/2 = 50%
      ccr2 = TimerPeriod / 3;  //占空比1/3 = 33%
      ccr3 = TimerPeriod / 4;  //占空比1/4 = 25%
      ccr4 = TimerPeriod / 5;  //占空比1/5 = 20%
     
      RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
      //时基初始化
      TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
      TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;  //计数器方向
      TIM_TimeBaseInitStructure.TIM_Prescaler = 0;   //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
      TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
      TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1;    //Period = (TIM counter clock / TIM output clock) - 1 = 20K
      TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);

     
      TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
      TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
      TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
      TIM_OCInitStructure.TIM_Pulse = ccr1;
      TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
      TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High;
      TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
      TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
     
      TIM_OC1Init(TIM1,&TIM_OCInitStructure);

      TIM_OCInitStructure.TIM_Pulse = ccr2;
      TIM_OC2Init(TIM1,&TIM_OCInitStructure);
     
      TIM_OCInitStructure.TIM_Pulse = ccr3;
      TIM_OC3Init(TIM1,&TIM_OCInitStructure);
     
      TIM_OCInitStructure.TIM_Pulse = ccr4;
      TIM_OC4Init(TIM1,&TIM_OCInitStructure);
     
      TIM_Cmd(TIM1,ENABLE);
      TIM_CtrlPWMOutputs(TIM1,ENABLE);
    }

  • 相关阅读:
    Oracle的基本语法(增删改查)
    Oracle存储过程的学习
    Oracle创建联合主键
    Oracle查询当前用户的信息
    Oracle给创建函数的权限
    Oracle给存储过程权限及触发器
    Unity3D脚本的生命周期(执行顺序)
    Unity性能优化的N种武器
    序列化、反序列化(Serializable特性)
    Unity 读取资源(图片)
  • 原文地址:https://www.cnblogs.com/zyqgold/p/3100377.html
Copyright © 2011-2022 走看看