zoukankan      html  css  js  c++  java
  • POJ 1436 Horizontally Visible Segments (线段树+区间覆盖)

    题意:给定一个二维平面,再给你n条垂直线条,如果有两条线段能用水平的线连接且不水平的线不接触其他线段,则说明这条两条线段可见,如果三条线段两两可见,则代表一个“三角形”,问给定线段集合中的“三角形”个数,

    解题思路:线段树区间覆盖加统计,要把区间变为点数,所以所有点的 y 都要 乘 2 。 不会stl的童鞋伤不起,用链表统计,更新,最后在暴力找个数。

    解题代码:

      1 #include <stdio.h>
      2 #include <string.h>
      3 #include <stdlib.h>
      4 #define  maxn 8005
      5 int  hs[maxn];
      6 struct op
      7 {
      8     int y1,y2,x;
      9 } ops[maxn];
     10 int cmp(const void *a , const void *b)
     11 {
     12     return (*(op*)a).x - (*(op*)b).x;
     13 }
     14 struct li
     15 {
     16     int num ;
     17     struct li*next;
     18 }ths[maxn];
     19 struct li * newli()
     20 {
     21     struct li *p = (li*)malloc(sizeof(li));
     22     p->num = 0 ;
     23     p->next = NULL;
     24     return p ;
     25 }
     26 struct node
     27 {
     28     int l , r, m ;
     29     int c ;
     30     struct li head;
     31     struct li* last;
     32 } tree[maxn*8];
     33 int L(int c)
     34 {
     35     return 2*c;
     36 }
     37 int R(int c)
     38 {
     39     return 2*c + 1;
     40 }
     41 void Free(struct li *p)
     42 {
     43     if(p->next != NULL)
     44        Free(p->next);
     45      free(p);
     46 }
     47 void build(int c, int p , int v)
     48 {
     49     tree[c].l = p ;
     50     tree[c].r = v;
     51     tree[c].m = (p + v)/2;
     52     tree[c].c = 0 ;
     53     tree[c].head.next = NULL;
     54     tree[c].head.num = 0 ;
     55     tree[c].last = &tree[c].head;
     56     if(p == v)
     57         return ;
     58     build(L(c),p,tree[c].m);
     59     build(R(c),tree[c].m+1,v);
     60 }
     61 
     62 void Pushdown(int c)
     63 {
     64 
     65     if(tree[c].c != 0)
     66     {
     67        tree[L(c)].c = tree[c].c;
     68         tree[R(c)].c = tree[c].c;
     69         struct li *p;
     70         p = newli();
     71         p->num = tree[c].c;
     72         tree[L(c)].head.num = 1;
     73         tree[L(c)].head.next = p ;
     74         tree[L(c)].last = p;
     75         p = newli();
     76         p->num = tree[c].c;
     77         tree[R(c)].head.num = 1;
     78         tree[R(c)].head.next = p ;
     79         tree[R(c)].last = p;
     80         tree[c].c  = 0;
     81     }
     82 }
     83 
     84 void Pushup(int c)
     85 {
     86     tree[c].head.num = tree[L(c)].head.num + tree[R(c)].head.num;
     87     tree[L(c)].last->next = tree[R(c)].head.next;
     88     tree[c].head.next = tree[L(c)].head.next;
     89     if(tree[c].head.num == 0 )
     90       tree[c].last = &tree[c].head;
     91     else if(tree[R(c)].head.num == 0)
     92       tree[c].last = tree[L(c)].last;
     93     else tree[c].last = tree[R(c)].last;
     94 }
     95 void update(int c, int p , int v, int value)
     96 {
     97     if(p <= tree[c].l &&v >= tree[c].r)
     98     {
     99         tree[c].c = value;
    100         struct li *p = &tree[c].head;
    101         for(int i = 1; i <= tree[c].head.num; i ++)
    102         {
    103             p = p->next ;
    104             hs[p->num] = 1;
    105         }
    106         p = newli();
    107         p->num = value;
    108         tree[c].head.num = 1;
    109         tree[c].head.next = p ;
    110         tree[c].last = p;
    111         return ;
    112     }
    113     Pushdown(c);
    114     if(v <= tree[c].m) update(L(c),p,v,value);
    115     else if(p > tree[c].m) update(R(c),p,v,value);
    116     else
    117     {
    118         update(L(c),p,tree[c].m,value);
    119         update(R(c),tree[c].m+1,v,value);
    120     }
    121     Pushup(c);
    122 }
    123 int sum =0 ,n;
    124 void fuck(int k)
    125 {
    126   for(int i = n;i >= 1;i --)
    127   {
    128       if(hs[i] == 1)
    129       {
    130         ths[k].num++;
    131         struct li *p = newli();
    132         p->num = i ;
    133         p->next = ths[k].next ;
    134         ths[k].next = p ;
    135       }
    136   }
    137 }
    138 void F(int k)
    139 {
    140     struct li * p1 ,*p2 ;
    141     p1 = &ths[k];
    142     bool visit[maxn] = {0};
    143     for(int i = 1; i <= ths[k].num ; i++)
    144     {
    145             p1 = p1->next;
    146             visit[p1->num] = 1;
    147             p2 = &ths[p1->num];
    148             for(int j= 1; j <= ths[p1->num].num; j ++)
    149             {
    150                   p2 = p2->next;
    151                   if(visit[p2->num])
    152                     sum ++;
    153             }
    154     }
    155 }
    156 int main()
    157 {
    158     int t ;
    159     scanf("%d",&t);
    160     while(t--)
    161     {
    162         sum = 0 ;
    163         memset(tree,0,sizeof(tree));
    164         memset(ths,0,sizeof(ths));
    165         scanf("%d",&n);
    166         for(int i =1 ; i <= n; i ++)
    167             scanf("%d %d %d",&ops[i].y1,&ops[i].y2,&ops[i].x);
    168         qsort(ops +1 , n, sizeof(op),cmp);
    169         build(1,0,2*maxn);
    170         for(int i= 1; i <= n; i ++)
    171         {
    172             memset(hs,0,sizeof(hs));
    173             update(1,ops[i].y1*2,ops[i].y2*2,i);
    174             fuck(i);
    175             F(i);
    176         }
    177         printf("%d
    ",sum);
    178     }
    179     return 0;
    180 }
    View Code
    没有梦想,何谈远方
  • 相关阅读:
    九九乘法表
    判断and ,or
    格式化输出
    标志位
    循环
    ECMA-262规范定义的七种错误类型
    主流浏览器内核
    代理服务器(理解篇)
    前端常用词汇整理
    LeetCode 451. 根据字符出现频率排序
  • 原文地址:https://www.cnblogs.com/zyue/p/3256935.html
Copyright © 2011-2022 走看看