1.函数本身可以赋值给变量(即变量可以指向函数)。而其实函数名本身就是指向函数的变量。
2.一个函数可以接受另一个函数作为参数。这种函数称为高阶函数。
def add(a,b,f) return f(a)+f(b)
3.map和reduce
map函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
>>> def f(x): ... return x * x ... >>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> list(r) [1, 4, 9, 16, 25, 36, 49, 64, 81]
reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
4.filter
和map()
类似,filter()
也接收一个函数和一个序列。和map()
不同的时,filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素。
5.返回函数不要引用任何循环变量,或者后续会发生变化的变量。
def count(): fs = [] for i in range(1, 4): def f(): return i*i fs.append(f) return fs f1, f2, f3 = count()
返回结果f1,f2,f3都是9,原因就在于返回的函数引用了变量i
,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i
已经变成了3
,因此最终结果为9
。
如果把fs.append(f)改成fs.append(f()).返回结果就对了。因为这样append里面就不是保存f这个函数了,而是把f()的值算好了以后在传进去的。
6.匿名函数
>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])) [1, 4, 9, 16, 25, 36, 49, 64, 81]
关键字lambda
表示匿名函数,冒号前面的x
表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return
,返回值就是该表达式的结果。
匿名函数也是一个函数对象也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x >>> f <function <lambda> at 0x101c6ef28> >>> f(5) 25
匿名函数也可以作为返回值返回:
def build(x, y): return lambda: x * x + y * y
7.函数对象有一个__name__属性,记录函数的名字。
8.装饰器(Decorator)
在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。
def log(func): def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper @log def now(): print('2015-3-25')