zoukankan      html  css  js  c++  java
  • 情感分析snownlp包部分核心代码理解

    snownlps是用Python写的个中文情感分析的包,自带了中文正负情感的训练集,主要是评论的语料库。使用的是朴素贝叶斯原理来训练和预测数据。主要看了一下这个包的几个主要的核心代码,看的过程作了一些注释,记录一下免得以后再忘了。

    1. sentiment文件夹下的__init__.py,主要是集成了前面写的几个模块的功能,进行打包。

     1 # -*- coding: utf-8 -*-
     2 from __future__ import unicode_literals
     3 
     4 import os
     5 import codecs
     6 
     7 from .. import normal
     8 from .. import seg
     9 from ..classification.bayes import Bayes
    10 
    11 data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
    12                          'sentiment.marshal')
    13 
    14 
    15 class Sentiment(object):
    16 
    17     def __init__(self):# 实例化Bayes()类作为属性,下面的很多方法都是调用的Bayes()的方法完成的
    18         self.classifier = Bayes()
    19 
    20     def save(self, fname, iszip=True):# 保存最终的模型
    21         self.classifier.save(fname, iszip)
    22 
    23     def load(self, fname=data_path, iszip=True):
    24         self.classifier.load(fname, iszip)# 加载贝叶斯模型
    25 
    26     # 分词以及去停用词的操作
    27     def handle(self, doc):
    28         words = seg.seg(doc)# 分词
    29         words = normal.filter_stop(words)# 去停用词
    30         return words# 返回分词后的结果,是一个list列表
    31 
    32     def train(self, neg_docs, pos_docs):
    33         data = []
    34         for sent in neg_docs:# 读入负样本
    35             data.append([self.handle(sent), 'neg'])
    36             # 所以可以看出进入bayes()的训练的数据data格式是[[[第一行分词],类别],
    37             #                                             [[第二行分词], 类别],
    38             #                                             [[第n行分词],类别]
    39             #                                                              ]
    40         for sent in pos_docs: # 读入正样本
    41             data.append([self.handle(sent), 'pos'])
    42         self.classifier.train(data)  # 调用的是Bayes模型的训练方法train()
    43 
    44     def classify(self, sent):
    45         ret, prob = self.classifier.classify(self.handle(sent))#得到分类结果和概率
    46         if ret == 'pos':#默认返回的是pos('正面'),否则就是负面
    47             return prob
    48         return 1-prob
    49 
    50 
    51 classifier = Sentiment()#实例化Sentiment()对象
    52 classifier.load()
    53 
    54 
    55 def train(neg_file, pos_file):
    56     #读取正负语料库文本
    57     neg_docs = codecs.open(neg_file, 'r', 'utf-8').readlines()
    58     pos_docs = codecs.open(pos_file, 'r', 'utf-8').readlines()
    59     global classifier#声明classifier为全局变量,下面重新赋值,虽然值仍然是Sentiment()函数
    60     classifier = Sentiment()
    61     classifier.train(neg_docs, pos_docs)#调用Sentment()模块里的train()方法
    62 
    63 
    64 def save(fname, iszip=True):
    65     classifier.save(fname, iszip)
    66 
    67 
    68 def load(fname, iszip=True):
    69     classifier.load(fname, iszip)
    70 
    71 
    72 def classify(sent):
    73     return classifier.classify(sent)

    2.使用的朴素贝叶斯原理及公式变形

    推荐一篇解释得很好的文章:情感分析——深入snownlp原理和实践

    classification文件夹下的Bayes.py模块主要包含两个方法train(data)和classify(X),训练和预测方法

     1     # 训练数据集
     2     # 训练的数据data格式是[[['分词1','分词2','分词x'],类别],
     3     #                     [[第二行分词], 类别],
     4     #                     [[第n行分词],类别]
     5     #                                      ]
     6     def train(self, data):#训练后得到的self.d={'neg':AddOneProb,'pos':AddOneProb},AddOneProb包含重要的分词信息,他里面也有一个self.d={'分词1':v1,'分词2':v2,'分词3':v3,...}包含分词和相应的分词个数。
     7 
     8         # 遍历数据集
     9         for d in data:
    10             # d[1]标签-->分类类别
    11             c = d[1]
    12             # 判断数据字典中是否有当前的标签
    13             if c not in self.d:
    14                 # 如果没有该标签,加入标签,值是一个AddOneProb对象。其实就是为每个分词建一个AddOnePro对象来计数
    15                 self.d[c] = AddOneProb()
    16             # d[0]是评论的分词list,遍历分词list
    17             for word in d[0]:
    18                 # 调用AddOneProb中的add方法,添加单词
    19                 self.d[c].add(word, 1)#self.d[c]是AddOneProb对象,调用AddOneProb的add()函数来对词word计数,重点看frequency.py中的几个类
    20         # 计算总词数
    21         self.total = sum(map(lambda x: self.d[x].getsum(), self.d.keys()))#self.d[x].getsum()是调用AddOneProb对象的getsum()函数计算词
    22 
    23     #对句子x分类,而x是被分过词的列表,(将句子分词的步骤会在Sentiment类中的分类函数classify()执行,这里不要管,只要知道x是分词后的的列表)
    24     def classify(self, x):
    25         tmp = {}
    26         # 遍历每个分类标签,本案例中只有两个类别
    27         for k in self.d:
    28             tmp[k] = log(self.d[k].getsum()) - log(self.total)#计算先验概率,即p(neg)和p(pos)两个类别的概率
    29             for word in x:
    30                 tmp[k] += log(self.d[k].freq(word))#计算后验概率,即每个类别条件下某个分词的概率p('词A'|neg)和p('词A'|pos),# 词频,词word不在字典里的话就为0
    31         ret, prob = 0, 0
    32         for k in self.d:#遍历两个类
    33             now = 0#预测值赋初值为0
    34             try:
    35                 for otherk in self.d:#当类相同时now=1,类不同时now累加exp(tmp[otherk]-tmp[k]),最终计算now为变形后的朴素贝叶斯预测值的分母
    36                     now += exp(tmp[otherk]-tmp[k])#朴素贝叶斯变形式可见博客
    37                 now = 1/now#求倒数为得到的这个类的预测值
    38             except OverflowError:
    39                 now = 0
    40             if now > prob:#比较两个类别的概率谁大,大的就是这个文本的类别。注意:初始prob等于0,经过遍历后悔更新prob并且prob等于相应类别的朴素贝叶斯概率
    41                 ret, prob = k, now
    42         return (ret, prob)
    43         #这里用朴素贝叶斯方法计算

    注意:classify()方法中的朴素贝叶斯变形方法的编写,下面两个for循环,先是遍历两个类,比例第一个类,now表示对这个类计算的贝叶斯预测值,赋初值为0,第二个循环遍历第一个类(otherk=k),

    exp(tmp[otherk]-tmp[k])=exp(0)=1,则now=1,再遍历第二个类得到上面变形公式中的第二部分值,这两个相加得到的new就是

    最后再倒数就得到了

       

    再附加一个上面的AddOneProb()方法的源代码解析,他就是一个对输入的分词计数的函数,将语料库的词进行分类计数,为了训练做得到先后验概率准备:

     1 '''对词计算频数'''
     2 class BaseProb(object):
     3 
     4     def __init__(self):
     5         self.d = {}#用来存储分词和分词的个数,键是分词,值是分词的个数
     6         self.total = 0.0#计数总共的词个数
     7         self.none = 0
     8 
     9     def exists(self, key):#判断字典self.d中是否存在这个词key
    10         return key in self.d
    11 
    12     def getsum(self):#返回语self.d中存储的词的总数
    13         return self.total
    14 
    15     def get(self, key):#判断字典中是否存在这个词key,并且返回这分词的词个数
    16         if not self.exists(key):
    17             return False, self.none
    18         return True, self.d[key]
    19 
    20     def freq(self, key):#计算词key的频率
    21         return float(self.get(key)[1])/self.total
    22 
    23     def samples(self):#返回字典的键,其实就是返回所有的分词,以列表形式
    24         return self.d.keys()
    25 
    26 
    27 class NormalProb(BaseProb):
    28 
    29     def add(self, key, value):
    30         if not self.exists(key):
    31             self.d[key] = 0
    32         self.d[key] += value
    33         self.total += value
    34 
    35 
    36 '''对词计数'''
    37 class AddOneProb(BaseProb):#继承BaseProb类,所以BaseProb类中的属性和函数都能用。
    38 
    39     def __init__(self):
    40         self.d = {}
    41         self.total = 0.0
    42         self.none = 1
    43 
    44     def add(self, key, value):
    45         self.total += value#计算总词数
    46         if not self.exists(key):#如果这个词key不在self.d中的话,那么在字典中加上这个词,即键为此,并且给这个词计数1,同时总的词数量total加1.
    47             self.d[key] = 1
    48             self.total += 1#感觉不应该再加1了,上面都已经计算过总数了????说是后面预测要用到,可能是要平滑
    49         self.d[key] += value#如果字典已经有这个词了的话,那么给这个词数量加1

    对于局进行分词的方法Handle()感觉也很重要,也需要看一看。

    再码个帖子:snownlp情感分析源码解析snownlp的Github代码

  • 相关阅读:
    Es module vs require
    phaser3 画虚线实现
    新的计划
    [转]Boostrap Table的refresh和refreshOptions区别
    Storing Java objects in MySQL blobs
    【转】Ubuntu下搜狗输入法突然无法输入中文
    团队作业六
    团队作业七
    团队作业四
    团队作业三
  • 原文地址:https://www.cnblogs.com/zz22--/p/9351346.html
Copyright © 2011-2022 走看看