zoukankan      html  css  js  c++  java
  • 条件熵

    1  信息熵以及引出条件熵

    我们首先知道信息熵是考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望。公式如下:

    我们的条件熵的定义是:定义为X给定条件下,Y的条件概率分布的熵对X的数学期望

    这个还是比较抽象,下面我们解释一下:

    设有随机变量(X,Y),其联合概率分布为 

    条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。

    随机变量X给定的条件下随机变量Y的条件熵H(Y|X)

    通俗来讲就是,知道X情况下,Y的信息量。 

    2  公式

    下面推导一下条件熵的公式:

    3  注意

    注意,这个条件熵,不是指在给定某个数(某个变量为某个值)的情况下,另一个变量的熵是多少,变量的不确定性是多少?而是期望!

    因为条件熵中X也是一个变量,意思是在一个变量X的条件下(变量X的每个值都会取),另一个变量Y熵对X的期望。

    这是最容易错的!

    4  例子

    下面通过例子来解释一下:

    假如我们有上面数据:

    设随机变量Y={嫁,不嫁}

    我们可以统计出,嫁的个数为6/12 = 1/2

    不嫁的个数为6/12 = 1/2

    那么Y的熵,根据熵的公式来算,可以得到H(Y) =  -1/2log1/2 -1/2log1/2

    为了引出条件熵,我们现在还有一个变量X,代表长相是帅还是帅,当长相是不帅的时候,统计如下红色所示:

    可以得出,当已知不帅的条件下,满足条件的只有4个数据了,这四个数据中,不嫁的个数为1个,占1/4

    嫁的个数为3个,占3/4

    那么此时的H(Y|X = 不帅) = -1/4log1/4-3/4log3/4

    p(X = 不帅) = 4/12 = 1/3

    同理我们可以得到:

    当已知帅的条件下,满足条件的有8个数据了,这八个数据中,不嫁的个数为5个,占5/8

    嫁的个数为3个,占3/8

    那么此时的H(Y|X = 帅) = -5/8log5/8-3/8log3/8

    p(X = 帅) = 8/12 = 2/3

    5  计算结果

    有了上面的铺垫之后,我们终于可以计算我们的条件熵了,我们现在需要求:

    H(Y|X = 长相)

    也就是说,我们想要求出当已知长相的条件下的条件熵。

    根据公式我们可以知道,长相可以取帅与不帅俩种

    条件熵是另一个变量Y熵对X(条件)的期望。

    公式为:

    H(Y|X=长相) = p(X =帅)*H(Y|X=帅)+p(X =不帅)*H(Y|X=不帅)

    然后将上面已经求得的答案带入即可求出条件熵!

    这里比较容易错误就是忽略了X也是可以取多个值,然后对其求期望!!

    6  总结

    其实条件熵意思是按一个新的变量的每个值对原变量进行分类,比如上面这个题把嫁与不嫁按帅,不帅分成了俩类。

    然后在每一个小类里面,都计算一个小熵,然后每一个小熵乘以各个类别的概率,然后求和。

    我们用另一个变量对原变量分类后,原变量的不确定性就会减小了,因为新增了Y的信息,可以感受一下。不确定程度减少了多少就是信息的增益。

    原文 知乎专栏:https://zhuanlan.zhihu.com/p/26551798  

  • 相关阅读:
    Python网络编程 —— 粘包问题及解决方法
    Python网络编程 —— socket(套接字)及通信
    Python网络编程 —— 网络基础知识
    Python
    MySQL 之 数据的导出与导入
    MySQL 之 慢查询优化及慢日志管理
    MySQL 之 索引进阶
    MySQL 之 索引
    MySQL 之 事务
    MySQL 之 表的存储引擎
  • 原文地址:https://www.cnblogs.com/zzdbullet/p/10073101.html
Copyright © 2011-2022 走看看